Borwein's algorithm
{{Short description|Method for calculating the value of pi}}
Borwein's algorithm was devised by Jonathan and Peter Borwein to calculate the value of . This and other algorithms can be found in the book Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity.Jonathan M. Borwein, Peter B. Borwein, Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987. Many of their results are available in: Jorg Arndt, Christoph Haenel, Pi Unleashed, Springer, Berlin, 2001, {{ISBN|3-540-66572-2}}
Ramanujan–Sato series
These two are examples of a Ramanujan–Sato series. The related Chudnovsky algorithm uses a discriminant with class number 1.
=Class number 2 (1989)=
:
B & = 13773980892672 \sqrt{61} + 107578229802750 \\
C & = \left(5280\left(236674+30303\sqrt{61}\right)\right)^3
\end{align}
Then
:
Each additional term of the partial sum yields approximately 25 digits.
=Class number 4 (1993)=
:
A = {} & 63365028312971999585426220 \\
& {} + 28337702140800842046825600\sqrt{5} \\
& {} + 384\sqrt{5} \big(10891728551171178200467436212395209160385656017 \\
& {} + \left. 4870929086578810225077338534541688721351255040\sqrt{5}\right)^\frac12 \\
B = {} & 7849910453496627210289749000 \\
& {} + 3510586678260932028965606400\sqrt{5} \\
& {} + 2515968\sqrt{3110}\big(6260208323789001636993322654444020882161 \\
& {} + \left. 2799650273060444296577206890718825190235\sqrt{5}\right)^\frac12 \\
C = {} & -214772995063512240 \\
& {} - 96049403338648032\sqrt{5} \\
& {} - 1296\sqrt{5}\big(10985234579463550323713318473 \\
& {} + \left. 4912746253692362754607395912\sqrt{5}\right)^\frac12
\end{align}
Then
:
Each additional term of the series yields approximately 50 digits.
Iterative algorithms
=Quadratic convergence (1984)=
:
b_0 & = 0 \\
p_0 & = 2 + \sqrt{2}
\end{align}
Then iterate
:
b_{n+1} & = \frac{(1 + b_n) \sqrt{a_n}}{a_n + b_n} \\
p_{n+1} & = \frac{(1 + a_{n+1})\, p_n b_{n+1}}{1 + b_{n+1}}
\end{align}
Then pk converges quadratically to {{pi}}; that is, each iteration approximately doubles the number of correct digits. The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for {{pi}}'s final result.
=Cubic convergence (1991)=
Start by setting
:
s_0 & = \frac{\sqrt{3} - 1}{2}
\end{align}
Then iterate
:
s_{k+1} & = \frac{r_{k+1} - 1}{2} \\
a_{k+1} & = r_{k+1}^2 a_k - 3^k\left(r_{k+1}^2-1\right)
\end{align}
Then ak converges cubically to {{sfrac|1|{{pi}}}}; that is, each iteration approximately triples the number of correct digits.
=Quartic convergence (1985)=
:
y_0 & = \sqrt{2}-1
\end{align}
Then iterate
:
a_{k+1} & = a_k\left(1+y_{k+1}\right)^4 - 2^{2k+3} y_{k+1} \left(1 + y_{k+1} + y_{k+1}^2\right)
\end{align}
Then ak converges quartically against {{sfrac|1|{{pi}}}}; that is, each iteration approximately quadruples the number of correct digits. The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for {{pi}}'s final result.
One iteration of this algorithm is equivalent to two iterations of the Gauss–Legendre algorithm.
A proof of these algorithms can be found here:{{citation|title=Easy Proof of Three Recursive {{pi}}-Algorithms|last1=Milla|first1=Lorenz|arxiv=1907.04110|year=2019}}
=Quintic convergence=
Start by setting
:
s_0 & = 5\left(\sqrt{5} - 2\right) = \frac{5}{\phi^3}
\end{align}
where is the golden ratio. Then iterate
:
y_{n+1} & = \left(x_{n+1} - 1\right)^2 + 7 \\
z_{n+1} & = \left(\frac12 x_{n+1}\left(y_{n+1} + \sqrt{y_{n+1}^2 - 4x_{n+1}^3}\right)\right)^\frac15 \\
a_{n+1} & = s_n^2 a_n - 5^n\left(\frac{s_n^2 - 5}{2} + \sqrt{s_n\left(s_n^2 - 2s_n + 5\right)}\right) \\
s_{n+1} & = \frac{25}{\left(z_{n+1} + \frac{x_{n+1}}{z_{n+1}} + 1\right)^2 s_n}
\end{align}
Then ak converges quintically to {{sfrac|1|{{pi}}}} (that is, each iteration approximately quintuples the number of correct digits), and the following condition holds:
:
=Nonic convergence=
Start by setting
:
r_0 & = \frac{\sqrt{3} - 1}{2} \\
s_0 & = \left(1 - r_0^3\right)^\frac13
\end{align}
Then iterate
:
u_{n+1} & = \left(9r_n \left(1 + r_n + r_n^2\right)\right)^\frac13 \\
v_{n+1} & = t_{n+1}^2 + t_{n+1}u_{n+1} + u_{n+1}^2 \\
w_{n+1} & = \frac{27 \left(1 + s_n + s_n^2\right)}{v_{n+1}} \\
a_{n+1} & = w_{n+1}a_n + 3^{2n-1}\left(1-w_{n+1}\right) \\
s_{n+1} & = \frac{\left(1 - r_n\right)^3}{\left(t_{n+1} + 2u_{n+1}\right)v_{n+1}} \\
r_{n+1} & = \left(1 - s_{n+1}^3\right)^\frac13
\end{align}
Then ak converges nonically to {{sfrac|1|{{pi}}}}; that is, each iteration approximately multiplies the number of correct digits by nine.{{cite web|url=http://www.hvks.com/Numerical/Downloads/HVE%20Practical%20implementation%20of%20PI%20Algorithms.pdf|title=Practical implementation of π Algorithms|author=Henrik Vestermark|date=4 November 2016|access-date=29 November 2020}}
See also
{{Portal|Mathematics}}
References
External links
- [http://mathworld.wolfram.com/PiFormulas.html Pi Formulas] from Wolfram MathWorld