Borwein integral

{{Short description|Type of mathematical integrals}}

In mathematics, a Borwein integral is an integral whose unusual properties were first presented by mathematicians David Borwein and Jonathan Borwein in 2001.{{Citation |last1=Borwein |first1=David |author-link1=David Borwein|last2=Borwein |first2=Jonathan M. |author-link2=Jonathan Borwein |title=Some remarkable properties of sinc and related integrals |doi=10.1023/A:1011497229317 |mr=1829810 |year=2001 |journal=The Ramanujan Journal |issn=1382-4090 |volume=5 |issue=1 |pages=73–89|s2cid=6515110 }} Borwein integrals involve products of \operatorname{sinc}(ax), where the sinc function is given by \operatorname{sinc}(x)=\sin(x)/x for x not equal to 0, and \operatorname{sinc}(0)=1.{{cite arXiv |title=Fun With Very Large Numbers |last1=Baillie |first1=Robert |eprint=1105.3943 |class=math.NT |year=2011}}

These integrals are remarkable for exhibiting apparent patterns that eventually break down. The following is an example.

:

\begin{align}

& \int_0^\infty \frac{\sin(x)}{x} \, dx= \frac \pi 2 \\[10pt]

& \int_0^\infty \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3} \, dx = \frac \pi 2 \\[10pt]

& \int_0^\infty \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3}\frac{\sin(x/5)}{x/5} \, dx = \frac \pi 2

\end{align}

This pattern continues up to

:\int_0^\infty \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3}\cdots\frac{\sin(x/13)}{x/13} \, dx = \frac \pi 2.

At the next step the pattern fails,

:

\begin{align}

\int_0^\infty \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3}\cdots\frac{\sin(x/15)}{x/15} \, dx

&= \frac{467807924713440738696537864469}{935615849440640907310521750000}~\pi \\[5pt]

&= \frac \pi 2 - \frac{6879714958723010531}{935615849440640907310521750000}~\pi \\[5pt]

&\approx \frac \pi 2 - 2.31\times 10^{-11}.

\end{align}

In general, similar integrals have value {{sfrac|{{pi}}|2}} whenever the numbers {{nowrap|3, 5, 7…}} are replaced by positive real numbers such that the sum of their reciprocals is less than 1.

In the example above, {{nowrap|{{sfrac|1|3}} + {{sfrac|1|5}} + … + {{sfrac|1|13}} < 1,}} but {{nowrap|{{sfrac|1|3}} + {{sfrac|1|5}} + … + {{sfrac|1|15}} > 1.}}

With the inclusion of the additional factor 2\cos(x), the pattern holds up over a longer series,{{cite journal |last=Hill |first=Heather | doi=10.1063/PT.6.1.20190808a | title=Random walkers illuminate a math problem | journal=Physics Today | year=2019 |issue=8 |page=30771 |bibcode=2019PhT..2019h0771H | s2cid=202930808 }}

:\int_0^\infty 2 \cos(x) \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3}\cdots\frac{\sin(x/111)}{x/111} \, dx = \frac \pi 2,

but

:\int_0^\infty 2 \cos(x) \frac{\sin(x)}{x}\frac{\sin(x/3)}{x/3}\cdots\frac{\sin(x/111)}{x/111}\frac{\sin(x/113)}{x/113} \, dx \approx \frac \pi 2 - 2.3324 \times 10^{-138}.

In this case, {{nowrap|{{sfrac|1|3}} + {{sfrac|1|5}} + … + {{sfrac|1|111}} < 2,}} but {{nowrap|{{sfrac|1|3}} + {{sfrac|1|5}} + … + {{sfrac|1|113}} > 2}}. The exact answer can be calculated using the general formula provided in the next section, and a representation of it is shown below. Fully expanded, this value turns into a fraction that involves two 2736 digit integers.

: \frac{\pi}{2}\left(1-\frac{3\cdot 5\cdots 113\cdot(1/3+1/5+\dots+1/113-2)^{56}}{2^{55}\cdot 56!}\right)

The reason the original and the extended series break down has been demonstrated with an intuitive mathematical explanation.{{Citation |last1=Schmid |first1=Hanspeter |title=Two curious integrals and a graphic proof |doi=10.4171/EM/239 |year=2014 |url=http://schmid-werren.ch/hanspeter/publications/2014elemath.pdf |journal=Elemente der Mathematik |issn=0013-6018 |volume=69 |issue=1 |pages=11–17}}{{Cite web|url=https://johncarlosbaez.wordpress.com/2018/09/20/patterns-that-eventually-fail/|title=Patterns That Eventually Fail|last=Baez|first=John|date=September 20, 2018|website=Azimuth|archive-url=https://web.archive.org/web/20190521084631/https://johncarlosbaez.wordpress.com/2018/09/20/patterns-that-eventually-fail/|archive-date=2019-05-21|access-date=}} In particular, a random walk reformulation with a causality argument sheds light on the pattern breaking and opens the way for a number of generalizations.{{Citation |last1=Satya Majumdar |last2=Emmanuel Trizac |title=When random walkers help solving intriguing integrals |doi=10.1103/PhysRevLett.123.020201 |year=2019 |journal=Physical Review Letters |issn=1079-7114 |volume=123 |issue=2 |pages=020201|pmid=31386528 |arxiv=1906.04545 |bibcode=2019PhRvL.123b0201M |s2cid=184488105 }}

General formula

Given a sequence of nonzero real numbers, a_0, a_1, a_2,\ldots, a general formula for the integral

: \int_0^\infty \prod_{k=0}^n \frac{\sin(a_kx)}{a_kx} \, dx

can be given. To state the formula, one will need to consider sums involving the a_k. In particular, if \gamma = (\gamma_1,\gamma_2,\ldots,\gamma_n)\in\{\pm 1\}^n is an n-tuple where each entry is \pm 1, then we write b_{\gamma}=a_0+\gamma_1a_1+\gamma_2a_2+\cdots+\gamma_na_n, which is a kind of alternating sum of the first few a_k, and we set \varepsilon_\gamma=\gamma_1\gamma_2\cdots\gamma_n, which is either \pm 1. With this notation, the value for the above integral is

: \int_0^\infty \prod_{k=0}^n \frac{\sin(a_kx)}{a_kx} \, dx = \frac{\pi}{2a_0} C_n

where

: C_n = \frac 1 {2^nn!\prod_{k=1}^na_k} \sum_{\gamma\in\{\pm 1\}^n} \varepsilon_\gamma b_\gamma^n \sgn(b_\gamma)

In the case when a_0 > |a_1|+|a_2|+\cdots+|a_n| , we have C_n=1 .

Furthermore, if there is an n such that for each k=0,\ldots,n-1 we have 0 and a_1+a_2+\cdots+a_{n-1} < a_0 < a_1+a_2+\cdots+a_{n-1}+a_n , which means that n is the first value when the partial sum of the first n elements of the sequence exceed a_0, then C_k=1 for each k=0,\ldots,n-1 but

: C_n = 1 - \frac{(a_1+a_2+\cdots+a_n-a_0)^n}{2^{n-1}n! \prod_{k=1}^na_k}

The first example is the case when a_k=\frac{1}{2k+1} .

Note that if n=7 then a_7=\frac{1}{15} and \frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}\approx 0.955 but \frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{13}+\frac{1}{15}\approx 1.02 , so because a_0=1 , we get that

: \int_0^\infty \frac{\sin(x)} x \frac{\sin(x/3)}{x/3}\cdots\frac{\sin(x/13)}{x/13} \, dx = \frac \pi 2

which remains true if we remove any of the products, but that

:

\begin{align}

& \int_0^\infty \frac{\sin(x)} x \frac{\sin(x/3)}{x/3}\cdots\frac{\sin(x/15)}{x/15} \, dx \\[5pt]

= {} & \frac{\pi}{2}\left(1-\frac{(3^{-1} + 5^{-1} + 7^{-1} + 9^{-1} + 11^{-1} + 13^{-1} + 15^{-1}-1)^7}{2^6\cdot 7! \cdot (1/3 \cdot 1/5 \cdot 1/7 \cdot 1/9 \cdot 1/11 \cdot 1/13 \cdot 1/15)}\right),

\end{align}

which is equal to the value given previously.

/* This is a sample program to demonstrate for Computer Algebra System "maxima". */

f(n) := if n=1 then sin(x)/x else f(n-2) * (sin(x/n)/(x/n));

for n from 1 thru 15 step 2 do (

print("f(", n, ")=", f(n) ),

print("integral of f for n=", n, " is ", integrate(f(n), x, 0, inf)) );

/* This is also sample program of another problem. */

f(n) := if n=1 then sin(x)/x else f(n-2) * (sin(x/n)/(x/n)); g(n) := 2*cos(x) * f(n);

for n from 1 thru 19 step 2 do (

print("g(", n, ")=", g(n) ),

print("integral of g for n=", n, " is ", integrate(g(n), x, 0, inf)) );

Method to solve Borwein integrals

An exact integration method that is efficient for evaluating Borwein-like integrals is discussed here.{{Citation |last1=Jia |last2=Tang |last3=Kempf |title=Integration by differentiation: new proofs, methods and examples |year=2017 |journal=Journal of Physics A |volume=50 |issue=23 |pages=235201|doi=10.1088/1751-8121/aa6f32 |arxiv=1610.09702 |bibcode= 2017JPhA...50w5201J|s2cid=56012760 }} This integration method works by reformulating integration in terms of a series of differentiations and it yields intuition into the unusual behavior of the Borwein integrals. The Integration by Differentiation method is applicable to general integrals, including Fourier and Laplace transforms. It is used in the integration engine of Maple since 2019. The Integration by Differentiation method is independent of the Feynman method that also uses differentiation to integrate.

Infinite products

While the integral

:

\begin{align}

\int_0^\infty \prod_{k = 0}^n \frac{\sin(x/(2k+1))}{x/(2k+1)} \, dx

\end{align}

becomes less than \frac{\pi}{2} when n exceeds 6, it never becomes much less, and in fact Borwein and Bailey{{Cite book |last1=Borwein |first1=J. M. |title=Mathematics by experiment : plausible reasoning in the 21st century |last2=Bailey |first2=D. H. |publisher=A K Peters |year=2003 |isbn= |edition=1st |location=Wellesley, MA |oclc=1064987843 }} have shown

:

\begin{align}

\int_0^\infty \prod_{k = 0}^\infty \frac{\sin(x/(2k+1))}{x/(2k+1)} \, dx &=

\int_0^\infty \lim_{n \to \infty} \prod_{k = 0}^n \frac{\sin(x/(2k+1))}{x/(2k+1)} \, dx \\[5pt]

&= \lim_{n \to \infty} \int_0^\infty \prod_{k = 0}^n \frac{\sin(x/(2k+1))}{x/(2k+1)} \, dx \\[5pt]

&\approx \frac{\pi}{2} - 0.0000352

\end{align}

where we can pull the limit out of the integral thanks to the dominated convergence theorem. Similarly, while

:

\int_0^\infty 2 \cos x \prod_{k = 0}^n \frac{\sin(x/(2k+1))}{x/(2k+1)} \, dx

becomes less than \frac{\pi}{2} when n exceeds 55, we have

:

\int_0^\infty 2 \cos x \prod_{k = 0}^n\frac{\sin(x/(2k+1))}{x/(2k+1)} \, dx \approx \frac{\pi}{2} - 2.9629 \cdot 10^{-42}

Furthermore, using the Weierstrass factorizations

: \frac{\sin x}{x} = \prod_{n = 1}^\infty \left( 1 - \frac{x^2}{\pi^2 n^2} \right) \qquad \cos x = \prod_{n = 0}^\infty \left( 1 - \frac{4x^2}{\pi^2 (2n+1)^2} \right)

one can show

:

\prod_{n = 0}^\infty \frac{\sin (2x/(2n+1))}{2x/(2n+1)} =

\prod_{n = 1}^\infty \cos\left(\frac{x}{n}\right)

and with a change of variables obtain{{Cite book |last=Borwein |first=Jonathan M. |title=Experimentation in mathematics : computational paths to discovery |date=2004 |publisher=AK Peters |others=David H. Bailey, Roland Girgensohn |isbn=1-56881-136-5 |location=Natick, Mass. |oclc=53021555}}

:

\int_0^\infty \prod_{n=1}^\infty \cos\left(\frac{x}{n} \right) \, d x = \frac{1}{2} \int_0^\infty \prod_{n = 0}^\infty \frac{\sin (x/(2n+1))}{x/(2n+1)} \,d x \approx \frac{\pi}{4} - 0.0000176

and{{Cite journal |last1=Bailey |first1=David H. |last2=Borwein |first2=Jonathan M. |last3=Kapoor |first3=Vishaal |last4=Weisstein |first4=Eric W. |date=2006-06-01 |title=Ten Problems in Experimental Mathematics |journal=The American Mathematical Monthly |language=en |volume=113 |issue=6 |pages=481 |doi=10.2307/27641975|jstor=27641975 |url=https://digital.library.unt.edu/ark:/67531/metadc879570/ |hdl=1959.13/928097 |hdl-access=free }}

:

\int_0^\infty \cos(2x) \prod_{n=1}^\infty \cos\left(\frac{x}{n} \right) \, d x = \frac{1}{2}

\int_0^\infty \cos(x) \prod_{n = 0}^\infty \frac{\sin (x/(2n+1))}{x/(2n+1)} \,d x \approx \frac{\pi}{8} - 7.4073 \cdot 10^{-43}

Probabilistic formulation

Schmuland{{Cite journal |last=Schmuland |first=Byron |date=2003 |title=Random Harmonic Series |journal=The American Mathematical Monthly |volume=110 |issue=5 |pages=407–416 |doi=10.2307/3647827|jstor=3647827 }} has given appealing probabilistic formulations of the infinite product Borwein integrals. For example, consider the random harmonic series

: \pm 1 \pm \frac{1}{2} \pm \frac{1}{3} \pm \frac{1}{4} \pm \frac{1}{5} \pm \cdots

where one flips independent fair coins to choose the signs. This series converges almost surely, that is, with probability 1. The probability density function of the result is a well-defined function, and value of this function at 2 is close to 1/8. However, it is closer to

: 0.124999999999999999999999999999999999999999764 \ldots

Schmuland's explanation is that this quantity is 1/\pi times

: \int_0^\infty \cos(2x) \prod_{n=1}^\infty \cos\left(\frac{x}{n} \right) \, d x \approx \frac{\pi}{8} - 7.4073 \cdot 10^{-43}

References

{{reflist}}