Bretschneider's formula
{{Short description|Formula for the area of a quadrilateral}}
In geometry, Bretschneider's formula is a mathematical expression for the area of a general quadrilateral.
It works on both convex and concave quadrilaterals, whether it is cyclic or not. The formula also works on crossed quadrilaterals provided that directed angles are used.
History
The German mathematician Carl Anton Bretschneider discovered the formula in 1842. The formula was also derived in the same year by the German mathematician Karl Georg Christian von Staudt.
Formulation
Bretschneider's formula is expressed as:
:
::
Here, {{math|a}}, {{math|b}}, {{math|c}}, {{math|d}} are the sides of the quadrilateral, {{math|s}} is the semiperimeter, and {{math|α}} and {{math|γ}} are any two opposite angles, since as long as directed angles are used so that or (when the quadrilateral is crossed).
Proof
Denote the area of the quadrilateral by {{math|K}}. Then we have
:
Therefore
:
:
The law of cosines implies that
:
because both sides equal the square of the length of the diagonal {{math|BD}}. This can be rewritten as
:
Adding this to the above formula for {{math|4K{{sup|2}}}} yields
:
4K^2 + \frac{(a^2 + d^2 - b^2 - c^2)^2}{4} &= (ad)^2 + (bc)^2 - 2abcd \cos (\alpha + \gamma) \\
&= (ad+bc)^2-2abcd-2abcd\cos(\alpha+\gamma) \\
&= (ad+bc)^2 - 2abcd(\cos(\alpha+\gamma)+1) \\
&= (ad+bc)^2 - 4abcd\left(\frac{\cos(\alpha+\gamma)+1}{2}\right) \\
&= (ad + bc)^2 - 4abcd \cos^2 \left(\frac{\alpha + \gamma}{2}\right).
\end{align}
Note that: (a trigonometric identity true for all )
Following the same steps as in Brahmagupta's formula, this can be written as
:
Introducing the semiperimeter
:
the above becomes
:
:
and Bretschneider's formula follows after taking the square root of both sides:
:
The second form is given by using the cosine half-angle identity
:
yielding
:
Emmanuel García has used the generalized half angle formulas to give an alternative proof. E. A. José García, Two Identities and their Consequences, MATINF, 6 (2020) 5-11. [http://matinf.upit.ro/MATINF6/index.html?fbclid=IwAR1l1rO0oOyEFW8UHuh5Mlt3gv_w8ibykYZGbVM7x2EKG7t3rHSc-vSMH7A#p=1]
Related formulae
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.
The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals {{math|e}} and {{math|f}} to give{{cite journal |last1=Coolidge |first1=J. L. |title=A Historically Interesting Formula for the Area of a Quadrilateral |journal=The American Mathematical Monthly |date=1939 |volume=46 |issue=6 |pages=345–347 |doi=10.2307/2302891|jstor=2302891 }}{{cite book|author1-link=E. W. Hobson|first1=E. W.|last1=Hobson|title=A Treatise on Plane Trigonometry|publisher=Cambridge University Press|date= 1918|pages= 204–205|url=https://archive.org/details/treatiseonplanet00hobs/page/n7/mode/2up}}
:
\begin{align}
K &=\tfrac{1}{4}\sqrt{4e^2f^2-(b^2+d^2-a^2-c^2)^2} \\
&=\sqrt{(s-a)(s-b)(s-c)(s-d) - \tfrac{1}{4}((ac+bd)^2-e^2f^2)} \\
&=\sqrt{(s-a)(s-b)(s-c)(s-d) - \tfrac{1}{4}(ac+bd+ef)(ac+bd-ef)} \\
\end{align}
Notes
{{reflist}}
References & further reading
- {{cite journal|first1=Ayoub B. |last1=Ayoub|title=Generalizations of Ptolemy and Brahmagupta Theorems|journal= Mathematics and Computer Education|volume= 41|issue= 1|date=2007|issn=0730-8639}}
- C. A. Bretschneider. Untersuchung der trigonometrischen Relationen des geradlinigen Viereckes. Archiv der Mathematik und Physik, Band 2, 1842, S. 225-261 ([https://books.google.com/books?id=7vxZAAAAYAAJ&pg=PA225 online copy, German])
- F. Strehlke: Zwei neue Sätze vom ebenen und sphärischen Viereck und Umkehrung des Ptolemaischen Lehrsatzes. Archiv der Mathematik und Physik, Band 2, 1842, S. 323-326 ([https://books.google.com/books?id=7vxZAAAAYAAJ&pg=PA323 online copy, German])
External links
- {{MathWorld|urlname=BretschneidersFormula|title=Bretschneider's formula}}
- [https://proofwiki.org/wiki/Bretschneider%27s_Formula Bretschneider's formula] at proofwiki.org
- [https://dynamicmathematicslearning.com/brahmagupta-crossed-cyclic.html Bretschneider's Quadrilateral Area Formula & Brahmagupta's Formula] at [http://dynamicmathematicslearning.com/JavaGSPLinks.htm Dynamic Geometry Sketches], interactive geometry sketches.