Brownian motion and Riemann zeta function

In mathematics, the Brownian motion and the Riemann zeta function are two central objects of study originating from different fields - probability theory and analytic number theory - that have deep mathematical connections between them. The relationships between stochastic processes derived from the Brownian motion and the Riemann zeta function show in a sense inuitively the stochastic behaviour underlying the Riemann zeta function. A representation of the Riemann zeta function in terms of stochastic processes is called a stochastic representation.

Brownian Motion and the Riemann Zeta Function

Let \zeta(s) denote the Riemann zeta function and \Gamma the gamma function, then the Riemann xi function is defined as

: \xi(s) := \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma(\tfrac{1}{2}s)\zeta(s)

satisfying the functional equation

:\xi(s)=\xi(1-s),\quad \forall s\in \mathbb{C}.

It turns out that 2\xi(s) describes the moments of a probability distribution \mu{{cite book |author=Roger Mansuy and Marc Yor |title=Aspects of Brownian Motion |series=Universitext |publisher=Springer, Berlin, Heidelberg |year=2008 |pages=165–167 |language=en |doi=10.1007/978-3-540-49966-4|isbn=978-3-540-22347-4 }}

:2\xi(s)=\mathbb{E}[X^s]=\int_{0}^{\infty} x^s d\mu(x),\quad \forall s\in\mathbb{C}

=Brownian Bridge and Riemann Zeta Function=

In 1987 Marc Yor and Philippe Biane proved that the random variable defined as the difference between the maximum and minimum of a Brownian bridge b_s describes the same distribution. A Brownian bridge is a one-dimensional Brownian motion (W_t)_{0\leq t\leq 1} conditioned on W_0=W_1=0.{{cite journal |author=Philippe Biane and Marc Yor |title=Valeurs principales associées aux temps locaux browniens |journal=Bulletin de Science Mathématique |volume=111 |year=1987 |pages=23–101 |language=fr}} They showed that

:X=\sqrt{\frac{2}{\pi}}\left(\max\limits_{0\leq s \leq 1} b_s-\min\limits_{0\leq s \leq 1} b_s\right)

is a solution for the moment equation

:2\xi(s)=\mathbb{E}[X^s]

However, this is not the only process that follows this distribution.

=Bessel Process and Riemann Zeta Function=

A Bessel process \operatorname{Bes}(d) of order d is the Euclidean norm of a d-dimensional Brownian motion. The \operatorname{Bes}(3) process is defined as

:R_t:=\sqrt{\left(W_t^{(1)}\right)^2+\left(W_t^{(2)}\right)^2+\left(W_t^{(3)}\right)^2}.

Define the hitting time T_1:=\inf\{t\geq 0\colon R_t=1\} and let \tilde{T_1} be an independent hitting time of another \operatorname{Bes}(3) process. Define the random variable

:N=\frac{\pi}{2}\left(T_1+\tilde{T_1}\right),

then we have

:2\xi(2s)=\mathbb{E}[N^s].{{cite journal |author=Philippe Biane, Jim Pitman, and Marc Yor |title=Probability laws related to the Jacobi theta and Riemann zeta function and Brownian excursions |journal=Bulletin of the American Mathematical Society |volume=38 |year=2001 |issue=4 |pages=435–465 |doi=10.1090/S0273-0979-01-00912-0 |arxiv=math/9912170}}

=Distribution=

Let \varphi be the Radon–Nikodym density of the distribution \mu, then the density satisfies the equation{{cite book |author=Roger Mansuy and Marc Yor |title=Aspects of Brownian Motion |series=Universitext |publisher=Springer, Berlin, Heidelberg |year=2008 |pages=165–167 |language=en |doi=10.1007/978-3-540-49966-4|isbn=978-3-540-22347-4 }}

:\varphi(t):=2t \Theta''(t) + 3\Theta'(t)

for the theta function

:\Theta(t)=\sum\limits_{n=-\infty}^{\infty}e^{-\pi n^2t}.

An alternative parametrization G(y):=\Theta(y^2) yields

:h(y)=2y G'(y)+y^2G''(y).

with explicit form

:h(y)=4y^2\sum\limits_{n=1}^{\infty}\pi(2\pi n^4 y^2 - 3n^2)e^{-\pi n^2 y^2}

where h(y)=2y\varphi(y^2) and

:2\xi(s)=\int_0^{\infty} y^{s-1}h(y)dy.

Bibliography

  • {{cite book

|author=Roger Mansuy and Marc Yor

|title=Aspects of Brownian Motion

|series=Universitext

|publisher=Springer, Berlin, Heidelberg

|year=2008

|language=en

|doi=10.1007/978-3-540-49966-4|isbn=978-3-540-22347-4

}}

References