Brownian sheet

In mathematics, a Brownian sheet or multiparametric Brownian motion is a multiparametric generalization of the Brownian motion to a Gaussian random field. This means we generalize the "time" parameter t of a Brownian motion B_t from \R_{+} to \R_{+}^n.

The exact dimension n of the space of the new time parameter varies from authors. We follow John B. Walsh and define the (n,d)-Brownian sheet, while some authors define the Brownian sheet specifically only for n=2, what we call the (2,d)-Brownian sheet.{{cite book|last1=Walsh|first1=John B.|title=An introduction to stochastic partial differential equations|date=1986|publisher=Springer Berlin Heidelberg|pages=269|ISBN=978-3-540-39781-6}}

This definition is due to Nikolai Chentsov, there exist a slightly different version due to Paul Lévy.

(n,d)-Brownian sheet

A d-dimensional gaussian process B=(B_t,t\in \mathbb{R}_+^n) is called a (n,d)-Brownian sheet if

  • it has zero mean, i.e. \mathbb{E}[B_t]=0 for all t=(t_1,\dots t_n)\in \mathbb{R}_+^n
  • for the covariance function

::\operatorname{cov}(B_s^{(i)},B_t^{(j)})=\begin{cases}

\prod\limits_{l=1}^n \operatorname{min} (s_l,t_l) & \text{if }i=j,\\

0 &\text{else}

\end{cases}

: for 1\leq i,j\leq d.{{citation|arxiv=math/0409491|author=Davar Khoshnevisan und Yimin Xiao|date=2004|title=Images of the Brownian Sheet}}

= Properties =

From the definition follows

:B(0,t_2,\dots,t_n)=B(t_1,0,\dots,t_n)=\cdots=B(t_1,t_2,\dots,0)=0

almost surely.

= Examples =

  • (1,1)-Brownian sheet is the Brownian motion in \mathbb{R}^1.
  • (1,d)-Brownian sheet is the Brownian motion in \mathbb{R}^d.
  • (2,1)-Brownian sheet is a multiparametric Brownian motion X_{t,s} with index set (t,s)\in [0,\infty)\times [0,\infty).

= Lévy's definition of the multiparametric Brownian motion =

In Lévy's definition one replaces the covariance condition above with the following condition

::\operatorname{cov}(B_s,B_t)=\frac{(|t|+|s|-|t-s|)}{2}

where |\cdot| is the Euclidean metric on \R^n.{{cite journal|title = Lévy's Brownian motion as a set-indexed process and a related central limit theorem |first1=Mina |last1=Ossiander |first2=Ronald |last2=Pyke|journal = Stochastic Processes and their Applications|volume = 21|number=1|pages = 133-145|year=1985|doi=10.1016/0304-4149(85)90382-5}}

Existence of abstract Wiener measure

Consider the space \Theta^{\frac{n+1}{2}}(\mathbb R^n;\R) of continuous functions of the form f:\mathbb R^n\to\mathbb R satisfying

\lim\limits_{|x|\to \infty}\left(\log(e+|x|)\right)^{-1}|f(x)|=0.

This space becomes a separable Banach space when equipped with the norm

\|f\|_{\Theta^{\frac{n+1}{2}}(\mathbb R^n;\R)} := \sup_{x\in\mathbb R^n}\left(\log(e+|x|)\right)^{-1}|f(x)|.

Notice this space includes densely the space of zero at infinity C_0(\mathbb{R}^n;\mathbb{R}) equipped with the uniform norm, since one can bound the uniform norm with the norm of \Theta^{\frac{n+1}{2}}(\mathbb R^n;\R) from above through the Fourier inversion theorem.

Let \mathcal{S}'(\mathbb{R}^{n};\mathbb{R}) be the space of tempered distributions. One can then show that there exist a suitable separable Hilbert space (and Sobolev space)

:H^\frac{n+1}{2}(\mathbb R^n,\mathbb R)\subseteq \mathcal{S}'(\mathbb{R}^{n};\mathbb{R})

that is continuously embbeded as a dense subspace in C_0(\mathbb{R}^n;\mathbb{R}) and thus also in \Theta^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R}) and that there exist a probability measure \omega on \Theta^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R}) such that the triple

(H^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R}),\Theta^{\frac{n+1}{2}}(\mathbb R^n;\mathbb{R}),\omega)

is an abstract Wiener space.

A path \theta \in \Theta^{\frac{n+1}{2}}(\mathbb{R}^n;\mathbb{R}) is \omega-almost surely

  • Hölder continuous of exponent \alpha \in (0,1/2)
  • nowhere Hölder continuous for any \alpha> 1/2.{{citation|first=Daniel|last=Stroock|authorlink=Daniel Stroock|title=Probability theory: an analytic view|publisher=Cambridge|year=2011|edition=2nd|page=349-352}}

This handles of a Brownian sheet in the case d=1. For higher dimensional d, the construction is similar.

See also

Literature

  • {{citation|first=Daniel|last=Stroock|authorlink=Daniel Stroock|title=Probability theory: an analytic view|publisher=Cambridge|year=2011|edition=2nd}}.
  • {{cite book|last1=Walsh|first1=John B.|title=An introduction to stochastic partial differential equations|date=1986|publisher=Springer Berlin Heidelberg|ISBN=978-3-540-39781-6}}
  • {{cite book|title= Multiparameter Processes: An Introduction to Random Fields|first1=Davar|last1=Khoshnevisan|publisher=Springer|ISBN=978-0387954592}}

References