Bussgang theorem

In mathematics, the Bussgang theorem is a theorem of stochastic analysis. The theorem states that the cross-correlation between a Gaussian signal before and after it has passed through a nonlinear operation are equal to the signals auto-correlation up to a constant. It was first published by Julian J. Bussgang in 1952 while he was at the Massachusetts Institute of Technology.J.J. Bussgang,"Cross-correlation function of amplitude-distorted Gaussian signals", Res. Lab. Elec., Mas. Inst. Technol., Cambridge MA, Tech. Rep. 216, March 1952.

Statement

Let \left\{X(t)\right\} be a zero-mean stationary Gaussian random process and \left \{ Y(t) \right\} = g(X(t)) where g(\cdot) is a nonlinear amplitude distortion.

If R_X(\tau) is the autocorrelation function of \left\{ X(t) \right\}, then the cross-correlation function of \left\{ X(t) \right\} and \left\{ Y(t) \right\} is

: R_{XY}(\tau) = CR_X(\tau),

where C is a constant that depends only on g(\cdot) .

It can be further shown that

: C = \frac{1}{\sigma^3\sqrt{2\pi}}\int_{-\infty}^\infty ug(u)e^{-\frac{u^2}{2\sigma^2}} \, du.

Derivation for One-bit Quantization

It is a property of the two-dimensional normal distribution that the joint density of y_1 and y_2 depends only on their covariance and is given explicitly by the expression

: p(y_1,y_2) = \frac{1}{2 \pi \sqrt{1-\rho^2}} e^{-\frac{y_1^2 + y_2^2 - 2 \rho y_1 y_2}{2(1-\rho^2)}}

where y_1 and y_2 are standard Gaussian random variables with correlation \phi_{y_1y_2}=\rho .

Assume that r_2 = Q(y_2) , the correlation between y_1 and r_2 is,

: \phi_{y_1r_2} = \frac{1}{2 \pi \sqrt{1-\rho^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y_1 Q(y_2) e^{-\frac{y_1^2 + y_2^2 - 2 \rho y_1 y_2}{2(1-\rho^2)}} \, dy_1 dy_2 .

Since

: \int_{-\infty}^{\infty} y_1 e^{-\frac{1}{2(1-\rho^2)} y_1^2 + \frac{\rho y_2}{1-\rho^2} y_1 } \, dy_1 = \rho \sqrt{2 \pi (1-\rho^2)} y_2 e^{ \frac{\rho^2 y_2^2}{2(1-\rho^2)} } ,

the correlation \phi_{y_1 r_2} may be simplified as

: \phi_{y_1 r_2} = \frac{\rho}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} y_2 Q(y_2) e^{-\frac{y_2^2}{2}} \, dy_2 .

The integral above is seen to depend only on the distortion characteristic Q() and is independent of \rho.

Remembering that \rho=\phi_{y_1 y_2}, we observe that for a given distortion characteristic Q(), the ratio \frac{\phi_{y_1 r_2}}{\phi_{y_1 y_2}} is K_Q=\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y_2 Q(y_2) e^{-\frac{y_2^2}{2}} \, dy_2.

Therefore, the correlation can be rewritten in the form

\phi_{y_1 r_2} = K_Q \phi_{y_1 y_2}.
The above equation is the mathematical expression of the stated "Bussgang‘s theorem".

If Q(x) = \text{sign}(x), or called one-bit quantization, then K_Q= \frac{2}{\sqrt{2\pi}} \int_{0}^{\infty} y_2 e^{-\frac{y_2^2}{2}} \, dy_2 = \sqrt{\frac{2}{\pi}}.

{{Cite journal|last=Vleck|first=J. H. Van|date=1966|title=The Spectrum of Clipped Noise|url=|journal=Radio Research Laboratory Report of Harvard University|volume=54 |issue=51|page=2 |doi=10.1109/PROC.1966.4567 |bibcode=1966IEEEP..54....2V }}{{Cite journal|last1=Vleck|first1=J. H. Van|last2=Middleton|first2=D.|date=January 1966|title=The spectrum of clipped noise|url=https://ieeexplore.ieee.org/document/1446497|journal=Proceedings of the IEEE|volume=54|issue=1|pages=2–19|doi=10.1109/PROC.1966.4567|bibcode=1966IEEEP..54....2V |issn=1558-2256}}{{Cite journal|last=Price|first=R.|date=June 1958|title=A useful theorem for nonlinear devices having Gaussian inputs|url=https://ieeexplore.ieee.org/document/1057444/;jsessionid=p7xQfWaG1zLvg43lhpnzWz6pUrVRPwQvTk_5Z-KclUPBlln2I6MR!144025597|journal=IRE Transactions on Information Theory|volume=4|issue=2|pages=69–72|doi=10.1109/TIT.1958.1057444|bibcode=1958ITIT....4...69P |issn=2168-2712}}

Arcsine law

If the two random variables are both distorted, i.e., r_1 = Q(y_1), r_2 = Q(y_2), the correlation of r_1 and r_2 is

\phi_{r_1 r_2}=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} Q(y_1) Q(y_2) p(y_1, y_2) \, dy_1 dy_2.
When Q(x) = \text{sign}(x), the expression becomes,
\phi_{r_1 r_2}=\frac{1}{2\pi \sqrt{1-\rho^2}} \left[ \int_{0}^{\infty} \int_{0}^{\infty} e^{-\alpha} \, dy_1 dy_2 + \int_{-\infty}^{0} \int_{-\infty}^{0} e^{-\alpha} \, dy_1 dy_2 - \int_{0}^{\infty} \int_{-\infty}^{0} e^{-\alpha} \, dy_1 dy_2 - \int_{-\infty}^{0} \int_{0}^{\infty} e^{-\alpha} \, dy_1 dy_2 \right]
where \alpha = \frac{y_1^2 + y_2^2 - 2\rho y_1 y_2}{2 (1-\rho^2)}.

Noticing that

\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(y_1,y_2) \, dy_1 dy_2

= \frac{1}{2\pi \sqrt{1-\rho^2}}

\left[ \int_{0}^{\infty} \int_{0}^{\infty} e^{-\alpha} \, dy_1 dy_2

+ \int_{-\infty}^{0} \int_{-\infty}^{0} e^{-\alpha} \, dy_1 dy_2

+ \int_{0}^{\infty} \int_{-\infty}^{0} e^{-\alpha} \, dy_1 dy_2

+ \int_{-\infty}^{0} \int_{0}^{\infty} e^{-\alpha} \, dy_1 dy_2 \right]=1,

and \int_{0}^{\infty} \int_{0}^{\infty} e^{-\alpha} \, dy_1 dy_2 = \int_{-\infty}^{0} \int_{-\infty}^{0} e^{-\alpha} \, dy_1 dy_2, \int_{0}^{\infty} \int_{-\infty}^{0} e^{-\alpha} \, dy_1 dy_2

= \int_{-\infty}^{0} \int_{0}^{\infty} e^{-\alpha} \, dy_1 dy_2,

we can simplify the expression of \phi_{r_1r_2} as

\phi_{r_1 r_2}=\frac{4}{2\pi \sqrt{1-\rho^2}} \int_{0}^{\infty} \int_{0}^{\infty} e^{-\alpha} \, dy_1 dy_2-1
Also, it is convenient to introduce the polar coordinate y_1 = R \cos \theta, y_2 = R \sin \theta . It is thus found that

\phi_{r_1 r_2} =\frac{4}{2\pi \sqrt{1-\rho^2}} \int_{0}^{\pi/2} \int_{0}^{\infty} e^{-\frac{R^2 - 2R^2 \rho \cos \theta \sin \theta \ }{2(1-\rho^2)}} R \, dR d\theta-1=\frac{4}{2\pi \sqrt{1-\rho^2}} \int_{0}^{\pi/2} \int_{0}^{\infty} e^{-\frac{R^2 (1-\rho \sin 2\theta )}{2(1-\rho^2)}} R \, dR d\theta -1

.

Integration gives

\phi_{r_1 r_2}=\frac{2\sqrt{1-\rho^2}}{\pi} \int_{0}^{\pi/2} \frac{d\theta}{1-\rho \sin 2\theta} - 1= - \frac{2}{\pi} \arctan \left( \frac{\rho-\tan\theta} {\sqrt{1-\rho^2}} \right) \Bigg|_{0}^{\pi/2} -1 =\frac{2}{\pi} \arcsin(\rho)

This is called "Arcsine law", which was first found by J. H. Van Vleck in 1943 and republished in 1966. The "Arcsine law" can also be proved in a simpler way by applying Price's Theorem.{{Cite book|last=Papoulis|first=Athanasios|title=Probability, Random Variables, and Stochastic Processes|publisher=McGraw-Hill|year=2002|isbn=0-07-366011-6|location=|pages=396}}

The function f(x)=\frac{2}{\pi} \arcsin x can be approximated as f(x) \approx \frac{2}{\pi} x when x is small.

= Price's Theorem =

Given two jointly normal random variables y_1 and y_2 with joint probability function

{\displaystyle p(y_{1},y_{2})={\frac {1}{2\pi {\sqrt {1-\rho ^{2}}}}}e^{-{\frac {y_{1}^{2}+y_{2}^{2}-2\rho y_{1}y_{2}}{2(1-\rho ^{2})}}}},
we form the mean
I(\rho)=E(g(y_1,y_2))=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(y_1, y_2) p(y_1, y_2) \, dy_1 dy_2
of some function g(y_1,y_2) of (y_1, y_2). If g(y_1, y_2) p(y_1, y_2) \rightarrow 0 as (y_1, y_2) \rightarrow 0, then
\frac{\partial^n I(\rho)}{\partial \rho^n}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}

\frac{\partial ^{2n} g(y_1, y_2)}{\partial y_1^n \partial y_2^n} p(y_1, y_2) \, dy_1 dy_2

=E \left(\frac{\partial ^{2n} g(y_1, y_2)}{\partial y_1^n \partial y_2^n} \right).

Proof. The joint characteristic function of the random variables y_1 and y_2 is by definition the integral
\Phi(\omega_1, \omega_2)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} p(y_1, y_2)

e^{j (\omega_1 y_1 + \omega_2 y_2 )} \, dy_1 dy_2

= \exp \left\{-\frac{\omega_1^2 + \omega_2^2 + 2\rho \omega_1 \omega_2}{2} \right\}.

From the two-dimensional inversion formula of Fourier transform, it follows that
p(y_1, y_2) = \frac{1}{4 \pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(\omega_1, \omega_2)

e^{-j (\omega_1 y_1 + \omega_2 y_2)} \, d\omega_1 d\omega_2

=\frac{1}{4 \pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}

\exp \left\{-\frac{\omega_1^2 + \omega_2^2 + 2\rho \omega_1 \omega_2}{2} \right\}

e^{-j (\omega_1 y_1 + \omega_2 y_2)} \, d\omega_1 d\omega_2.

Therefore, plugging the expression of p(y_1, y_2) into I(\rho), and differentiating with respect to \rho, we obtain
\begin{align}

\frac{\partial^n I(\rho)}{\partial \rho^n} & =

\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2) p(y_1, y_2) \, dy_1 dy_2 \\

& =

\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2)

\left(\frac{1}{4 \pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^ {n}\Phi(\omega_1, \omega_2)}{\partial \rho^n}

e^{-j(\omega_1 y_1 + \omega_2 y_2)} \, d\omega_1 d\omega_2 \right)

\, dy_1 dy_2 \\

& =

\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2)

\left(\frac{(-1)^n}{4 \pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \omega_1^n \omega_2^n \Phi(\omega_1, \omega_2)

e^{-j(\omega_1 y_1 + \omega_2 y_2)} \, d\omega_1 d\omega_2 \right)

\, dy_1 dy_2 \\

& =

\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2)

\left(\frac{1}{4 \pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(\omega_1, \omega_2)

\frac{\partial^{2n} e^{-j(\omega_1 y_1 + \omega_2 y_2)}}{\partial y_1^n \partial y_2^n} \, d\omega_1 d\omega_2 \right)

\, dy_1 dy_2 \\

& =

\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2)

\frac{\partial^{2n} p(y_1, y_2)}{\partial y_1^n \partial y_2^n}

\, dy_1 dy_2 \\

\end{align}

After repeated integration by parts and using the condition at \infty, we obtain the Price's theorem.
\begin{align}

\frac{\partial^n I(\rho)}{\partial \rho^n} & =

\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(y_1, y_2)

\frac{\partial^{2n} p(y_1, y_2)}{\partial y_1^n \partial y_2^n}

\, dy_1 dy_2 \\

& = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}

\frac{\partial^{2} g(y_1, y_2)}{\partial y_1 \partial y_2}

\frac{\partial^{2n-2} p(y_1, y_2)}{\partial y_1^{n-1} \partial y_2^{n-1}}

\, dy_1 dy_2

\\

&=\cdots \\

&=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}

\frac{\partial ^{2n} g(y_1, y_2)}{\partial y_1^n \partial y_2^n} p(y_1, y_2) \, dy_1 dy_2

\end{align}

= Proof of Arcsine law by Price's Theorem =

If g(y_1, y_2) = \text{sign}(y_1) \text{sign} (y_2), then \frac{\partial^2 g(y_1, y_2)}{\partial y_1 \partial y_2} = 4 \delta(y_1) \delta(y_2) where \delta() is the Dirac delta function.

Substituting into Price's Theorem, we obtain,

\frac{\partial E(\text{sign} (y_1) \text{sign}(y_2))}{\partial \rho} = \frac{\partial I(\rho)}{\partial \rho}= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}

4 \delta(y_1) \delta(y_2) p(y_1, y_2) \, dy_1 dy_2=\frac{2}{\pi \sqrt{1-\rho^2}}.

When \rho=0, I(\rho)=0. Thus
E \left(\text{sign}(y_1) \text{sign}(y_2) \right) = I(\rho)=\frac{2}{\pi} \int_{0}^{\rho} \frac{1}{\sqrt{1-\rho^2}} \, d\rho=\frac{2}{\pi} \arcsin(\rho),
which is Van Vleck's well-known result of "Arcsine law".

Application

This theorem implies that a simplified correlator can be designed.{{clarify|reason=compared to what?|date=December 2010}} Instead of having to multiply two signals, the cross-correlation problem reduces to the gating{{clarify|reason=undefined|date=December 2010}} of one signal with another.{{citation needed|date=December 2010}}

References

{{reflist}}

Further reading

  • E.W. Bai; V. Cerone; D. Regruto (2007) [https://web.archive.org/web/20110710123549/http://diegoregruto.com/P14.pdf "Separable inputs for the identification of block-oriented nonlinear systems"], Proceedings of the 2007 American Control Conference (New York City, July 11–13, 2007) 1548–1553

{{DEFAULTSORT:Bussgang Theorem}}

Category:Theorems about stochastic processes