Butson-type Hadamard matrix

In mathematics, a complex Hadamard matrix H of size N with all its columns (rows) mutually orthogonal, belongs to the Butson-type H(qN) if all its elements are powers of q-th root of unity,

:: (H_{jk})^q = 1 \quad\text{for}\quad j,k = 1,2,\dots,N.

Existence

If p is prime and N>1, then H(p,N) can exist

only for N = mp with integer m and

it is conjectured they exist for all such cases

with p \ge 3. For p=2, the corresponding conjecture is existence for all multiples of 4.

In general, the problem of finding all sets

\{q,N \} such that the Butson-type matrices

H(q,N) exist, remains open.

Examples

  • H(2,N) contains real Hadamard matrices of size N,
  • H(4,N) contains Hadamard matrices composed of \pm 1, \pm i – such matrices were called by Turyn, complex Hadamard matrices.
  • in the limit q \to \infty one can approximate all complex Hadamard matrices.
  • Fourier matrices [F_N]_{jk}:= \exp[(2\pi i (j-1)(k-1)/N]

\text{ for }j,k = 1,2,\dots,N

: belong to the Butson-type,

:: F_N \in H(N,N),

: while

:: F_N \otimes F_N \in H(N,N^2),

:: F_N \otimes F_N\otimes F_N \in H(N,N^3).

:: D_6 := \begin{bmatrix}

1 & 1 & 1 & 1 & 1 & 1 \\

1 & -1 & i & -i& -i & i \\

1 & i &-1 & i& -i &-i \\

1 & -i & i & -1& i &-i \\

1 & -i &-i & i& -1 & i \\

1 & i &-i & -i& i & -1 \\

\end{bmatrix}

\in\, H(4,6),

:: S_6 := \begin{bmatrix}

1 & 1 & 1 & 1 & 1 & 1 \\

1 & 1 & z & z & z^2 & z^2 \\

1 & z & 1 & z^2&z^2 & z \\

1 & z & z^2& 1& z & z^2 \\

1 & z^2& z^2& z& 1 & z \\

1 & z^2& z & z^2& z & 1 \\

\end{bmatrix}

\in\, H(3,6)

: where z =\exp(2\pi i/3).

References

  • A. T. Butson, Generalized Hadamard matrices, Proc. Am. Math. Soc. 13, 894-898 (1962).
  • A. T. Butson, Relations among generalized Hadamard matrices, relative difference sets, and maximal length linear recurring sequences, Can. J. Math. 15, 42-48 (1963).
  • R. J. Turyn, Complex Hadamard matrices, pp. 435–437 in Combinatorial Structures and their Applications, Gordon and Breach, London (1970).