Cantellated 120-cell

{{Short description|4D geometry item}}

class=wikitable align=right width=450 style="margin-left:1em;"

|+ Four cantellations

align=center valign=top

|150px
120-cell
{{CDD|node_1|5|node|3|node|3|node}}

|150px
Cantellated 120-cell
{{CDD|node_1|5|node|3|node_1|3|node}}

|150px
Cantellated 600-cell
{{CDD|node|5|node_1|3|node|3|node_1}}

align=center valign=top

|150px
600-cell
{{CDD|node|5|node|3|node|3|node_1}}

|150px
Cantitruncated 120-cell
{{CDD|node_1|5|node_1|3|node_1|3|node}}

|150px
Cantitruncated 600-cell
{{CDD|node|5|node_1|3|node_1|3|node_1}}

colspan=3|Orthogonal projections in H3 Coxeter plane

In four-dimensional geometry, a cantellated 120-cell is a convex uniform 4-polytope, being a cantellation (a 2nd order truncation) of the regular 120-cell.

There are four degrees of cantellations of the 120-cell including with permutations truncations. Two are expressed relative to the dual 600-cell.

{{TOC left}}

{{-}}

Cantellated 120-cell

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Cantellated 120-cell

bgcolor=#e7dcc3|TypeUniform 4-polytope
bgcolor=#e7dcc3|Uniform index37
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|5|node|3|node_1|3|node}}
bgcolor=#e7dcc3|Cells1920 total:
120 (3.4.5.4) 20px
1200 (3.4.4) 20px
600 (3.3.3.3) 20px
bgcolor=#e7dcc3|Faces4800{3}+3600{4}+720{5}
bgcolor=#e7dcc3|Edges10800
bgcolor=#e7dcc3|Vertices3600
bgcolor=#e7dcc3|Vertex figure80px
wedge
bgcolor=#e7dcc3|Schläfli symbolt0,2{5,3,3}
bgcolor=#e7dcc3|Symmetry groupH4, [3,3,5], order 14400
bgcolor=#e7dcc3|Propertiesconvex

File:Small rhombated hecatonicosachoron net.png]]

The cantellated 120-cell is a uniform 4-polytope. It is named by its construction as a Cantellation operation applied to the regular 120-cell. It contains 1920 cells, including 120 rhombicosidodecahedra, 1200 triangular prisms, 600 octahedra. Its vertex figure is a wedge, with two rhombicosidodecahedra, two triangular prisms, and one octahedron meeting at each vertex.

= Alternative names =

  • Cantellated 120-cell Norman Johnson
  • Cantellated hecatonicosachoron / Cantellated dodecacontachoron / Cantellated polydodecahedron
  • Small rhombated hecatonicosachoron (Acronym {{not a typo|srahi}}) (George Olshevsky and Jonathan Bowers)Klitzing, (o3x3o5x - srahi)
  • Ambo-02 polydodecahedron (John Conway)

= Images =

class="wikitable"

|+ Orthographic projections by Coxeter planes

align=center

!H3

!A2 / B3 / D4

!A3 / B2

align=center

|160px
[10]

|160px
[6]

|160px
[4]

class=wikitable

|400px
Schlegel diagram. Pentagonal face are removed.

Cantitruncated 120-cell

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Cantitruncated 120-cell

bgcolor=#e7dcc3|TypeUniform 4-polytope
bgcolor=#e7dcc3|Uniform index42
bgcolor=#e7dcc3|Schläfli symbolt0,1,2{5,3,3}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node_1|5|node_1|3|node_1|3|node}}
bgcolor=#e7dcc3|Cells1920 total:
120 (4.6.10) 20px
1200 (3.4.4) 20px
600 (3.6.6) 20px
bgcolor=#e7dcc3|Faces9120:
2400{3}+3600{4}+
2400{6}+720{10}
bgcolor=#e7dcc3|Edges14400
bgcolor=#e7dcc3|Vertices7200
bgcolor=#e7dcc3|Vertex figure80px
sphenoid
bgcolor=#e7dcc3|Symmetry groupH4, [3,3,5], order 14400
bgcolor=#e7dcc3|Propertiesconvex

File:Great rhombated hecatonicosachoron net.png]]

The cantitruncated 120-cell is a uniform polychoron.

This 4-polytope is related to the regular 120-cell. The cantitruncation operation create new truncated tetrahedral cells at the vertices, and triangular prisms at the edges. The original dodecahedron cells are cantitruncated into great rhombicosidodecahedron cells.

The image shows the 4-polytope drawn as a Schlegel diagram which projects the 4-dimensional figure into 3-space, distorting the sizes of the cells. In addition, the decagonal faces are hidden, allowing us to see the elemented projected inside.

= Alternative names =

  • Cantitruncated 120-cell Norman Johnson
  • Cantitruncated hecatonicosachoron / Cantitruncated polydodecahedron
  • Great rhombated hecatonicosachoron (Acronym grahi) (George Olshevsky and Jonthan Bowers)Klitzing, (o3x3x5x - grahi)
  • Ambo-012 polydodecahedron (John Conway)

=Images=

class="wikitable"

|+ Orthographic projections by Coxeter planes

align=center

!H3

!A2 / B3 / D4

!A3 / B2

align=center

|200px
[10]

|200px
[6]

|200px
[4]

class=wikitable width=320

|+ Schlegel diagram

320px
Centered on truncated icosidodecahedron cell with decagonal faces hidden.

Cantellated 600-cell

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Cantellated 600-cell

bgcolor=#e7dcc3|TypeUniform 4-polytope
bgcolor=#e7dcc3|Uniform index40
bgcolor=#e7dcc3|Schläfli symbolt0,2{3,3,5}
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node|5|node_1|3|node|3|node_1}}
bgcolor=#e7dcc3|Cells1440 total:
120 20px 3.5.3.5
600 20px 3.4.3.4
720 20px 4.4.5
bgcolor=#e7dcc3|Faces8640 total:
(1200+2400){3}
+3600{4}+1440{5}
bgcolor=#e7dcc3|Edges10800
bgcolor=#e7dcc3|Vertices3600
bgcolor=#e7dcc3|Vertex figure80px
isosceles triangular prism
bgcolor=#e7dcc3|Symmetry groupH4, [3,3,5], order 14400
bgcolor=#e7dcc3|Propertiesconvex

File:Small rhombated hexacosichoron net.png]]

The cantellated 600-cell is a uniform 4-polytope. It has 1440 cells: 120 icosidodecahedra, 600 cuboctahedra, and 720 pentagonal prisms. Its vertex figure is an isosceles triangular prism, defined by one icosidodecahedron, two cuboctahedra, and two pentagonal prisms.

= Alternative names =

  • Cantellated 600-cell Norman Johnson
  • Cantellated hexacosichoron / Cantellated tetraplex
  • Small {{not a typo|rhombihexacosichoron}} (Acronym srix) (George Olshevsky and Jonathan Bowers)Klitzing, (x3o3x5o - srix)
  • Ambo-02 tetraplex (John Conway)

= Construction =

This 4-polytope has cells at 3 of 4 positions in the fundamental domain, extracted from the Coxeter diagram by removing one node at a time:

class=wikitable

!Node

!Order

!Coxeter diagram
{{CDD|node|5|node_1|3|node|3|node_1}}

!Cell

!Picture

align=center

!0

!600

|{{CDD|node_1|3|node|3|node_1}}

|Cantellated tetrahedron
(Cuboctahedron)

|50px

align=center

!1

!1200

|{{CDD|node|2|node|3|node_1}}

|None
(Degenerate triangular prism)

align=center

!2

!720

|{{CDD|node|5|node_1|2|node_1}}

|Pentagonal prism

|50px

align=center

!3

!120

|{{CDD|node|5|node_1|3|node}}

|Rectified dodecahedron
(Icosidodecahedron)

|50px

There are 1440 pentagonal faces between the icosidodecahedra and pentagonal prisms. There are 3600 squares between the cuboctahedra and pentagonal prisms. There are 2400 triangular faces between the icosidodecahedra and cuboctahedra, and 1200 triangular faces between pairs of cuboctahedra.

There are two classes of edges: 3-4-4, 3-4-5: 3600 have two squares and a triangle around it, and 7200 have one triangle, one square, and one pentagon.

= Images =

class="wikitable"

|+ Orthographic projections by Coxeter planes

align=center

!H4

! -

align=center

|240px
[30]

|240px
[20]

align=center

!F4

!H3

align=center

|240px
[12]

|240px
[10]

align=center

!A2 / B3 / D4

!A3 / B2

align=center

|240px
[6]

|240px
[4]

class=wikitable width=480

|+ Schlegel diagrams

240px

|240px
Stereographic projection with its 3600 green triangular faces and its 3600 blue square faces.

Cantitruncated 600-cell

class="wikitable" align="right" style="margin-left:10px" width="250"

!bgcolor=#e7dcc3 colspan=2|Cantitruncated 600-cell

bgcolor=#e7dcc3|TypeUniform 4-polytope
bgcolor=#e7dcc3|Uniform index45
bgcolor=#e7dcc3|Coxeter diagram{{CDD|node|5|node_1|3|node_1|3|node_1}}
bgcolor=#e7dcc3|Cells1440 total:
120 (5.6.6) 20px
720 (4.4.5) 20px
600 (4.6.6) 20px
bgcolor=#e7dcc3|Faces8640:
3600{4}+1440{5}+
3600{6}
bgcolor=#e7dcc3|Edges14400
bgcolor=#e7dcc3|Vertices7200
bgcolor=#e7dcc3|Vertex figure80px
sphenoid
bgcolor=#e7dcc3|Schläfli symbolt0,1,2{3,3,5}
bgcolor=#e7dcc3|Symmetry groupH4, [3,3,5], order 14400
bgcolor=#e7dcc3|Propertiesconvex

File:Great rhombated hexacosichoron net.png]]

The cantitruncated 600-cell is a uniform 4-polytope. It is composed of 1440 cells: 120 truncated icosahedra, 720 pentagonal prisms and 600 truncated octahedra. It has 7200 vertices, 14400 edges, and 8640 faces (3600 squares, 1440 pentagons, and 3600 hexagons). It has an irregular tetrahedral vertex figure, filled by one truncated icosahedron, one pentagonal prism and two truncated octahedra.

= Alternative names =

  • Cantitruncated 600-cell (Norman Johnson)
  • Cantitruncated hexacosichoron / Cantitruncated polydodecahedron
  • Great rhombated hexacosichoron (acronym grix) (George Olshevsky and Jonathan Bowers)Klitzing, (x3x3x5o - grix)
  • Ambo-012 polytetrahedron (John Conway)

=Images=

class=wikitable

|+ Schlegel diagram

|400px

class="wikitable"

|+ Orthographic projections by Coxeter planes

align=center

!H3

!A2 / B3 / D4

!A3 / B2

align=center

|160px
[10]

|160px
[6]

|160px
[4]

Related polytopes

{{H4_family}}

Notes

{{reflist}}

References

  • {{PolyCell | urlname = section4.html| title = Convex uniform polychora based on the hecatonicosachoron (120-cell) and hexacosichoron (600-cell) - Model 37}}
  • [http://www.polytope.de/nr57.html Archimedisches Polychor Nr. 57 (cantellated 120-cell)] Marco Möller's Archimedean polytopes in R4 (German)
  • [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html Kaleidoscopes: Selected Writings of H.S.M. Coxeter], edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}}
  • (Paper 22) H.S.M. Coxeter, [https://doi.org/10.1007%2FBF01181449 Regular and Semi Regular Polytopes I], [Math. Zeit. 46 (1940) 380-407, MR 2,10]
  • (Paper 23) H.S.M. Coxeter, [https://doi.org/10.1007%2FBF01161657 Regular and Semi-Regular Polytopes II], [Math. Zeit. 188 (1985) 559-591]
  • (Paper 24) H.S.M. Coxeter, [https://doi.org/10.1007%2FBF01161745 Regular and Semi-Regular Polytopes III], [Math. Zeit. 200 (1988) 3-45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • [http://www.polytope.de Four-dimensional Archimedean Polytopes] (German), Marco Möller, 2004 PhD dissertation [http://www.sub.uni-hamburg.de/opus/volltexte/2004/2196/pdf/Dissertation.pdf] {{Webarchive|url=https://web.archive.org/web/20050322235615/http://www.sub.uni-hamburg.de/opus/volltexte/2004/2196/pdf/Dissertation.pdf |date=2005-03-22 }} [http://www.polytope.de/nr63.html m63] [http://www.polytope.de/nr61.html m61] [http://www.polytope.de/nr56.html m56]
  • {{PolyCell | urlname = section4.html| title = Convex uniform polychora based on the hecatonicosachoron (120-cell) and hexacosichoron (600-cell) - Model 40, 42, 45}}
  • {{KlitzingPolytopes|polychora.htm|4D|uniform polytopes (polychora)}} o3x3o5x - srahi, o3x3x5x - grahi, x3o3x5o - srix, x3x3x5o - grix