Cantellated 6-cubes#Cantellated 6-cube
class=wikitable align=right width=360 style="margin-left:1em;" |
align=center
|colspan=4|120px |colspan=4|120px |colspan=4|120px |
align=center
|colspan=4|120px |colspan=4|120px |colspan=4|120px |
align=center
|colspan=3|90px |colspan=3|90px |colspan=3|90px |colspan=3|90px |
colspan=12|Orthogonal projections in B6 Coxeter plane |
---|
In six-dimensional geometry, a cantellated 6-cube is a convex uniform 6-polytope, being a cantellation of the regular 6-cube.
There are 8 cantellations for the 6-cube, including truncations. Half of them are more easily constructed from the dual 6-orthoplex.
{{TOC left}}
{{Clear}}
Cantellated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Cantellated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | rr{4,3,3,3,3} or |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node|3|node_1|3|node|3|node|3|node}} {{CDD|node|split1-43|nodes_11|3b|nodeb|3b|nodeb|3b|nodeb}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | 4800 |
bgcolor=#e7dcc3|Vertices | 960 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Cantellated hexeract
- Small rhombated hexeract (acronym: srox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/srox.htm (o3o3o3x3o4x - srox)]}}
= Images =
{{6-cube Coxeter plane graphs|t02|150}}
Bicantellated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Cantellated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2rr{4,3,3,3,3} or |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node_1|3|node|3|node_1|3|node|3|node}} {{CDD|node|split1|nodes_11|4a3b|nodes|3b|nodeb}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Bicantellated hexeract
- Small birhombated hexeract (acronym: saborx) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/saborx.htm (o3o3x3o3x4o - saborx)]}}
= Images =
{{6-cube Coxeter plane graphs|t13|150}}
Cantitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Cantellated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | tr{4,3,3,3,3} or |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|4|node_1|3|node_1|3|node|3|node|3|node}} {{CDD|node_1|split1-43|nodes_11|3b|nodeb|3b|nodeb|3b|nodeb}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Cantitruncated hexeract
- Great rhombihexeract (acronym: grox) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/grox.htm (o3o3o3x3x4x - grox)]}}
= Images =
{{6-cube Coxeter plane graphs|t012|150}}
It is fourth in a series of cantitruncated hypercubes:
{{Cantitruncated hypercube polytopes}}
Bicantitruncated 6-cube
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Cantellated 6-cube | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2tr{4,3,3,3,3} or |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|4|node_1|3|node_1|3|node_1|3|node|3|node}} {{CDD|node_1|split1|nodes_11|4a3b|nodes|3b|nodeb}} |
bgcolor=#e7dcc3|5-faces | |
bgcolor=#e7dcc3|4-faces | |
bgcolor=#e7dcc3|Cells | |
bgcolor=#e7dcc3|Faces | |
bgcolor=#e7dcc3|Edges | |
bgcolor=#e7dcc3|Vertices | |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter groups | B6, [3,3,3,3,4] |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Bicantitruncated hexeract
- Great birhombihexeract (acronym: gaborx) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/gaborx.htm (o3o3x3x3x4o - gaborx)]}}
= Images =
{{6-cube Coxeter plane graphs|t123|150}}
Related polytopes
These polytopes are part of a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.
{{Hexeract family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [https://www.wiley.com/en-us/Kaleidoscopes-p-9780471010036 wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} o3o3o3x3o4x - srox, o3o3x3o3x4o - saborx, o3o3o3x3x4x - grox, o3o3x3x3x4o - gaborx {{sfn whitelist|CITEREFKlitzing}}
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{polytopes}}