Cantellated 6-simplexes
class=wikitable align=right width=540 style="margin-left:1em;" |
align=center
|180px |180px |180px |
align=center
|180px |180px |180px |
colspan=3|Orthogonal projections in A6 Coxeter plane |
---|
In six-dimensional geometry, a cantellated 6-simplex is a convex uniform 6-polytope, being a cantellation of the regular 6-simplex.
There are unique 4 degrees of cantellation for the 6-simplex, including truncations.
{{clear}}
Cantellated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Cantellated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | rr{3,3,3,3,3} or |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node|3|node_1|3|node|3|node|3|node}} {{CDD|node|split1|nodes_11|3a|nodea|3a|nodea|3a|nodea}} |
bgcolor=#e7dcc3|5-faces | 35 |
bgcolor=#e7dcc3|4-faces | 210 |
bgcolor=#e7dcc3|Cells | 560 |
bgcolor=#e7dcc3|Faces | 805 |
bgcolor=#e7dcc3|Edges | 525 |
bgcolor=#e7dcc3|Vertices | 105 |
bgcolor=#e7dcc3|Vertex figure | 5-cell prism |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Small rhombated heptapeton (Acronym: sril) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/sril.htm (x3o3x3o3o3o - sril)]}}
= Coordinates =
The vertices of the cantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,1,2). This construction is based on facets of the cantellated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t02|150}}
Bicantellated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Bicantellated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2rr{3,3,3,3,3} or |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node}} {{CDD|node|split1|nodes_11|3ab|nodes|3a|nodea}} |
bgcolor=#e7dcc3|5-faces | 49 |
bgcolor=#e7dcc3|4-faces | 329 |
bgcolor=#e7dcc3|Cells | 980 |
bgcolor=#e7dcc3|Faces | 1540 |
bgcolor=#e7dcc3|Edges | 1050 |
bgcolor=#e7dcc3|Vertices | 210 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Small prismated heptapeton (Acronym: sabril) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/sabril.htm (o3x3o3x3o3o - sabril)]}}
= Coordinates =
The vertices of the bicantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t13|150}}
Cantitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|cantitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | tr{3,3,3,3,3} or |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node}} {{CDD|node_1|split1|nodes_11|3a|nodea|3a|nodea|3a|nodea}} |
bgcolor=#e7dcc3|5-faces | 35 |
bgcolor=#e7dcc3|4-faces | 210 |
bgcolor=#e7dcc3|Cells | 560 |
bgcolor=#e7dcc3|Faces | 805 |
bgcolor=#e7dcc3|Edges | 630 |
bgcolor=#e7dcc3|Vertices | 210 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Great rhombated heptapeton (Acronym: gril) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/gril.htm (x3x3x3o3o3o - gril)]}}
= Coordinates =
The vertices of the cantitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,2,3). This construction is based on facets of the cantitruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t012|150}}
Bicantitruncated 6-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|bicantitruncated 6-simplex | |
bgcolor=#e7dcc3|Type | uniform 6-polytope |
bgcolor=#e7dcc3|Schläfli symbol | 2tr{3,3,3,3,3} or |
bgcolor=#e7dcc3|Coxeter-Dynkin diagrams | {{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node}} {{CDD|node_1|split1|nodes_11|3ab|nodes|3a|nodea}} |
bgcolor=#e7dcc3|5-faces | 49 |
bgcolor=#e7dcc3|4-faces | 329 |
bgcolor=#e7dcc3|Cells | 980 |
bgcolor=#e7dcc3|Faces | 1540 |
bgcolor=#e7dcc3|Edges | 1260 |
bgcolor=#e7dcc3|Vertices | 420 |
bgcolor=#e7dcc3|Vertex figure | |
bgcolor=#e7dcc3|Coxeter group | A6, [35], order 5040 |
bgcolor=#e7dcc3|Properties | convex |
= Alternate names =
- Great birhombated heptapeton (Acronym: gabril) (Jonathan Bowers){{sfn|Klitzing|at=[https://bendwavy.org/klitzing/incmats/gabril.htm (o3x3x3x3o3o - gabril)]}}
= Coordinates =
The vertices of the bicantitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 7-orthoplex.
= Images =
{{6-simplex Coxeter plane graphs|t123|150}}
Related uniform 6-polytopes
The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter group, all shown here in A6 Coxeter plane orthographic projections.
{{Heptapeton family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html wiley.com], {{isbn|978-0-471-01003-6}}
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D uniform polytopes (polypeta) with acronyms}} x3o3x3o3o3o - sril, o3x3o3x3o3o - sabril, x3x3x3o3o3o - gril, o3x3x3x3o3o - gabril {{sfn whitelist| CITEREFKlitzing}}
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}