Cantellated 8-simplexes#Bicantitruncated 8-simplex
class=wikitable align=right style="margin-left:1em;" |
align=center
|120px |120px |120px |
align=center
|120px |120px |120px |
colspan=4|Orthogonal projections in A8 Coxeter plane |
---|
In eight-dimensional geometry, a cantellated 8-simplex is a convex uniform 8-polytope, being a cantellation of the regular 8-simplex.
There are six unique cantellations for the 8-simplex, including permutations of truncation.
{{clear}}
Cantellated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Cantellated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | rr{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagram | {{CDD|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 1764 |
style="background:#e7dcc3;"|Vertices | 252 |
style="background:#e7dcc3;"|Vertex figure | 6-simplex prism |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Small rhombated enneazetton (acronym: srene) (Jonathan Bowers)Klitizing, (x3o3x3o3o3o3o3o - srene)
= Coordinates =
The Cartesian coordinates of the vertices of the cantellated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,1,2). This construction is based on facets of the cantellated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t02|120}}
Bicantellated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Bicantellated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | r2r{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagram | {{CDD|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 5292 |
style="background:#e7dcc3;"|Vertices | 756 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Small birhombated enneazetton (acronym: sabrene) (Jonathan Bowers)Klitizing, (o3x3o3x3o3o3o3o - sabrene)
= Coordinates =
The Cartesian coordinates of the vertices of the bicantellated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t13|120}}
Tricantellated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|tricantellated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | r3r{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagram | {{CDD|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | 8820 |
style="background:#e7dcc3;"|Vertices | 1260 |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Small trirhombihexadecaexon (acronym: satrene) (Jonathan Bowers)Klitizing, (o3o3x3o3x3o3o3o - satrene)
= Coordinates =
The Cartesian coordinates of the vertices of the tricantellated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,1,2,2). This construction is based on facets of the tricantellated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t13|120}}
Cantitruncated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Cantitruncated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | tr{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagram | {{CDD|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | |
style="background:#e7dcc3;"|Vertices | |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
= Alternate names=
- Great rhombated enneazetton (acronym: grene) (Jonathan Bowers)Klitizing, (x3x3x3o3o3o3o3o - grene)
= Coordinates =
The Cartesian coordinates of the vertices of the cantitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,0,1,2,3). This construction is based on facets of the bicantitruncated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t012|120}}
Bicantitruncated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="250"
! style="background:#e7dcc3;" colspan="2"|Bicantitruncated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t2r{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagram | {{CDD|node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | |
style="background:#e7dcc3;"|Vertices | |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
Alternate names
- Great birhombated enneazetton (acronym: gabrene) (Jonathan Bowers)Klitizing, (o3x3x3x3o3o3o3o - gabrene)
= Coordinates =
The Cartesian coordinates of the vertices of the bicantitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t123|120}}
Tricantitruncated 8-simplex
class="wikitable" align="right" style="margin-left:10px" width="280"
! style="background:#e7dcc3;" colspan="2"|Tricantitruncated 8-simplex | |
style="background:#e7dcc3;"|Type | uniform 8-polytope |
style="background:#e7dcc3;"|Schläfli symbol | t3r{3,3,3,3,3,3,3} |
style="background:#e7dcc3;"|Coxeter-Dynkin diagram | {{CDD|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}} |
style="background:#e7dcc3;"|7-faces | |
style="background:#e7dcc3;"|6-faces | |
style="background:#e7dcc3;"|5-faces | |
style="background:#e7dcc3;"|4-faces | |
style="background:#e7dcc3;"|Cells | |
style="background:#e7dcc3;"|Faces | |
style="background:#e7dcc3;"|Edges | |
style="background:#e7dcc3;"|Vertices | |
style="background:#e7dcc3;"|Vertex figure | |
style="background:#e7dcc3;"|Coxeter group | A8, [37], order 362880 |
style="background:#e7dcc3;"|Properties | convex |
- Great trirhombated enneazetton (acronym: gatrene) (Jonathan Bowers)Klitizing, (o3o3x3x3x3o3o3o - gatrene)
= Coordinates =
The Cartesian coordinates of the vertices of the tricantitruncated 8-simplex can be most simply positioned in 9-space as permutations of (0,0,0,0,1,2,3,3,3). This construction is based on facets of the bicantitruncated 9-orthoplex.
= Images =
{{8-simplex Coxeter plane graphs|t234|120}}
Related polytopes
This polytope is one of 135 uniform 8-polytopes with A8 symmetry.
{{Enneazetton family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polyzetta.htm|8D|uniform polytopes (polyzetta)}} x3o3x3o3o3o3o3o - srene, o3x3o3x3o3o3o3o - sabrene, o3o3x3o3x3o3o3o - satrene, x3x3x3o3o3o3o3o - grene, o3x3x3x3o3o3o3o - gabrene, o3o3x3x3x3o3o3o - gatrene
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}