Cantic 6-cube
{{Short description|Shape in six-dimensional geometry}}
class="wikitable" align="right" style="margin-left:10px" width="250"
!bgcolor=#e7dcc3 colspan=2|Cantic 6-cube | |
bgcolor=#ffffff align=center colspan=2|280px D6 Coxeter plane projection | |
bgcolor=#e7dcc3|Type | uniform polypeton |
bgcolor=#e7dcc3|Schläfli symbol | t0,1{3,33,1} h2{4,34} |
bgcolor=#e7dcc3|Coxeter-Dynkin diagram | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node}} |
bgcolor=#e7dcc3|5-faces | 76 |
bgcolor=#e7dcc3|4-faces | 636 |
bgcolor=#e7dcc3|Cells | 2080 |
bgcolor=#e7dcc3|Faces | 3200 |
bgcolor=#e7dcc3|Edges | 2160 |
bgcolor=#e7dcc3|Vertices | 480 |
bgcolor=#e7dcc3|Vertex figure | ( )v[{ }x{3,3}] |
bgcolor=#e7dcc3|Coxeter groups | D6, [33,1,1] |
bgcolor=#e7dcc3|Properties | convex |
In six-dimensional geometry, a cantic 6-cube (or a truncated 6-demicube) is a uniform 6-polytope.
Alternate names
- Truncated 6-demicube/demihexeract (Acronym thax) (Jonathan Bowers)Klitizing, (x3x3o *b3o3o3o – thax)
Cartesian coordinates
The Cartesian coordinates for the 480 vertices of a cantic 6-cube centered at the origin and edge length 6{{radic|2}} are coordinate permutations:
: (±1,±1,±3,±3,±3,±3)
with an odd number of plus signs.
Images
{{6-demicube Coxeter plane graphs|t01|200}}
Related polytopes
{{Cantic cube table}}
There are 47 uniform polytopes with D6 symmetry, 31 are shared by the B6 symmetry, and 16 are unique:
{{Demihexeract_family}}
Notes
{{reflist}}
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Norman Johnson Uniform Polytopes, Manuscript (1991)
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
- {{KlitzingPolytopes|polypeta.htm|6D|uniform polytopes (polypeta)}} x3x3o *b3o3o3o – thax
External links
- [https://web.archive.org/web/20070310205351/http://members.cox.net/hedrondude/topes.htm Polytopes of Various Dimensions]
- [http://tetraspace.alkaline.org/glossary.htm Multi-dimensional Glossary]
{{Polytopes}}