Carnot's theorem (conics)

{{short description|Relation between conic sections and triangles}}

{{other|Carnot's theorem (disambiguation)}}

File:Carnot conic.svg

Carnot's theorem (named after Lazare Carnot) describes a relation between conic sections and triangles.

In a triangle ABC with points C_A, C_B on the side AB, A_B, A_C on the side BC and B_C, B_A on the side AC those six points are located on a common conic section if and only if the following equation holds:

:

\frac

AC_A
BC_A
\cdot \frac
AC_B
BC_B
\cdot \frac
BA_B
CA_B
\cdot \frac
BA_C
CA_C
\cdot \frac
CB_C
AB_C
\cdot \frac
CB_A
AB_A
=1

.

References

  • Huub P.M. van Kempen: [http://forumgeom.fau.edu/FG2006volume6/FG200626.pdf On Some Theorems of Poncelet and Carnot]. Forum Geometricorum, Volume 6 (2006), pp. 229–234.
  • Lorenz Halbeisen, Norbert Hungerbühler, Juan Läuchli: Mit harmonischen Verhältnissen zu Kegelschnitten: Perlen der klassischen Geometrie. Springer 2016, {{ISBN|9783662530344}}, pp. 40, 168–173 (German)