Catalan's conjecture
{{short description|The only nontrivial positive integer solution to x^a-y^b equals 1 is 3^2-2^3}}
{{for|Catalan's aliquot sequence conjecture|Aliquot sequence#Catalan–Dickson conjecture}}
{{for|Catalan's Mersenne number conjecture|Double Mersenne number#Catalan–Mersenne number conjecture}}
Catalan's conjecture (or Mihăilescu's theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu at Paderborn University.{{Citation |last=Weisstein |first=Eric W. |author-link=Eric W. Weisstein |title=Catalan's conjecture |publisher=MathWorld |url=https://mathworld.wolfram.com/CatalansConjecture.html }}{{Harvnb|Mihăilescu|2004}} The integers 23 and 32 are two perfect powers (that is, powers of exponent higher than one) of natural numbers whose values (8 and 9, respectively) are consecutive. The theorem states that this is the only case of two consecutive perfect powers. That is to say, that {{math_theorem|Catalan's conjecture|the only solution in the natural numbers of
:
for {{math|a, b > 1}}, {{math|x, y > 0}} is {{math|x {{=}} 3}}, {{math|a {{=}} 2}}, {{math|y {{=}} 2}}, {{math|b {{=}} 3}}.}}
History
The history of the problem dates back at least to Gersonides, who proved a special case of the conjecture in 1343 where (x, y) was restricted to be (2, 3) or (3, 2). The first significant progress after Catalan made his conjecture came in 1850 when Victor-Amédée Lebesgue dealt with the case b = 2.{{citation | author=Victor-Amédée Lebesgue | author-link=Victor-Amédée Lebesgue | title=Sur l'impossibilité, en nombres entiers, de l'équation xm=y2+1 | journal=Nouvelles annales de mathématiques | series=1re série | volume=9 | year=1850 | pages=178–181 }}
In 1976, Robert Tijdeman applied Baker's method in transcendence theory to establish a bound on a,b and used existing results bounding x,y in terms of a, b to give an effective upper bound for x,y,a,b. Michel Langevin computed a value of for the bound,{{citation | title=13 Lectures on Fermat's Last Theorem | first=Paulo | last=Ribenboim | author-link=Paulo Ribenboim | publisher=Springer-Verlag | year=1979 | isbn=0-387-90432-8 | zbl=0456.10006 | page=236 }} resolving Catalan's conjecture for all but a finite number of cases.
Catalan's conjecture was proven by Preda Mihăilescu in April 2002. The proof was published in the Journal für die reine und angewandte Mathematik, 2004. It makes extensive use of the theory of cyclotomic fields and Galois modules. An exposition of the proof was given by Yuri Bilu in the Séminaire Bourbaki.{{Citation | last1=Bilu | first1=Yuri | title=Séminaire Bourbaki vol. 2003/04 Exposés 909-923 | series=Astérisque | year=2004 | volume=294 | chapter= Catalan's conjecture | pages=1–26| chapter-url=http://www.numdam.org/book-part/SB_2002-2003__45__1_0/ }} In 2005, Mihăilescu published a simplified proof.{{Harvnb|Mihăilescu|2005}}
Pillai's conjecture
{{unsolved|mathematics|Does each positive integer occur only finitely many times as a difference of perfect powers?}}
Pillai's conjecture concerns a general difference of perfect powers {{OEIS|id=A001597}}: it is an open problem initially proposed by S. S. Pillai, who conjectured that the gaps in the sequence of perfect powers tend to infinity. This is equivalent to saying that each positive integer occurs only finitely many times as a difference of perfect powers: more generally, in 1931 Pillai conjectured that for fixed positive integers A, B, C the equation has only finitely many solutions (x, y, m, n) with (m, n) ≠ (2, 2). Pillai proved that for fixed A, B, x, y, and for any λ less than 1, we have uniformly in m and n.{{citation | pages=[https://archive.org/details/rationalnumberth00nark/page/n261 253]–254 | title=Rational Number Theory in the 20th Century: From PNT to FLT | url=https://archive.org/details/rationalnumberth00nark | url-access=limited | series=Springer Monographs in Mathematics | first=Wladyslaw | last=Narkiewicz | publisher=Springer-Verlag | year=2011 | isbn=978-0-857-29531-6}}
The general conjecture would follow from the ABC conjecture.{{citation | last=Schmidt | first=Wolfgang M. | author-link=Wolfgang M. Schmidt | title=Diophantine approximations and Diophantine equations | series=Lecture Notes in Mathematics | volume=1467 | publisher=Springer-Verlag | year=1996 | edition=2nd | isbn=3-540-54058-X | zbl=0754.11020 | page=207}}
Pillai's conjecture means that for every natural number n, there are only finitely many pairs of perfect powers with difference n. The list below shows, for n ≤ 64, all solutions for perfect powers less than 1018, such that the exponent of both powers is greater than 1. The number of such solutions for each n is listed at {{oeis|id=A076427}}. See also {{oeis|id=A103953}} for the smallest solution (> 0).
class="wikitable" style="border:none;text-align:right;"
! n ! solution ! numbers k such that k and k + n |rowspan="33" style="padding:2px;background:white;border:none;"| ! n ! solution ! numbers k such that k and k + n | ||||
1 | 1 | style="text-align:left"| 8
| 33 | 2 | style="text-align:left"| 16, 256 |
2 | 1 | style="text-align:left"| 25
| 34 | 0 | style="text-align:left"| none |
3 | 2 | style="text-align:left"| 1, 125
| 35 | 3 | style="text-align:left"| 1, 289, 1296 |
4 | 3 | style="text-align:left"| 4, 32, 121
| 36 | 2 | style="text-align:left"| 64, 1728 |
5 | 2 | style="text-align:left"| 4, 27
| 37 | 3 | style="text-align:left"| 27, 324, {{val|14348907}} |
6 | 0 | style="text-align:left"| none
| 38 | 1 | style="text-align:left"| 1331 |
7 | 5 | style="text-align:left"| 1, 9, 25, 121, {{val|32761}}
| 39 | 4 | style="text-align:left"| 25, 361, 961, {{val|10609}} |
8 | 3 | style="text-align:left"| 1, 8, {{val|97336}}
| 40 | 4 | style="text-align:left"| 9, 81, 216, 2704 |
9 | 4 | style="text-align:left"| 16, 27, 216, {{val|64000}}
| 41 | 3 | style="text-align:left"| 8, 128, 400 |
10 | 1 | style="text-align:left"| 2187
| 42 | 0 | style="text-align:left"| none |
11 | 4 | style="text-align:left"| 16, 25, 3125, 3364
| 43 | 1 | style="text-align:left"| 441 |
12 | 2 | style="text-align:left"| 4, 2197
| 44 | 3 | style="text-align:left"| 81, 100, 125 |
13 | 3 | style="text-align:left"| 36, 243, 4900
| 45 | 4 | style="text-align:left"| 4, 36, 484, 9216 |
14 | 0 | style="text-align:left"| none
| 46 | 1 | style="text-align:left"| 243 |
15 | 3 | style="text-align:left"| 1, 49, {{val|1295029}}
| 47 | 6 | style="text-align:left"| 81, 169, 196, 529, 1681, {{val|250000}} |
16 | 3 | style="text-align:left"| 9, 16, 128
| 48 | 4 | style="text-align:left"| 1, 16, 121, 21904 |
17 | 7 | style="text-align:left"| 8, 32, 64, 512, {{val|79507}}, {{val|140608}}, {{val|143384152904}}
| 49 | 3 | style="text-align:left"| 32, 576, {{val|274576}} |
18 | 3 | style="text-align:left"| 9, 225, 343
| 50 | 0 | style="text-align:left"| none |
19 | 5 | style="text-align:left"| 8, 81, 125, 324, {{val|503284356}}
| 51 | 2 | style="text-align:left"| 49, 625 |
20 | 2 | style="text-align:left"| 16, 196
| 52 | 1 | style="text-align:left"| 144 |
21 | 2 | style="text-align:left"| 4, 100
| 53 | 2 | style="text-align:left"| 676, {{val|24336}} |
22 | 2 | style="text-align:left"| 27, 2187
| 54 | 2 | style="text-align:left"| 27, 289 |
23 | 4 | style="text-align:left"| 4, 9, 121, 2025
| 55 | 3 | style="text-align:left"| 9, 729, {{val|175561}} |
24 | 5 | style="text-align:left"| 1, 8, 25, 1000, {{val|542939080312}}
| 56 | 4 | style="text-align:left"| 8, 25, 169, 5776 |
25 | 2 | style="text-align:left"| 100, 144
| 57 | 3 | style="text-align:left"| 64, 343, 784 |
26 | 3 | style="text-align:left"| 1, {{val|42849}}, {{val|6436343}}
| 58 | 0 | style="text-align:left"| none |
27 | 3 | style="text-align:left"| 9, 169, 216
| 59 | 1 | style="text-align:left"| 841 |
28 | 7 | style="text-align:left"| 4, 8, 36, 100, 484, {{val|50625}}, {{val|131044}}
| 60 | 4 | style="text-align:left"| 4, 196, {{val|2515396}}, {{val|2535525316}} |
29 | 1 | style="text-align:left"| 196
| 61 | 2 | style="text-align:left"| 64, 900 |
30 | 1 | style="text-align:left"| 6859
| 62 | 0 | style="text-align:left"| none |
31 | 2 | style="text-align:left"| 1, 225
| 63 | 4 | style="text-align:left"| 1, 81, 961, {{val|183250369}} |
32 | 4 | style="text-align:left"| 4, 32, 49, 7744
| 64 | 4 | style="text-align:left"| 36, 64, 225, 512 |
See also
Notes
{{reflist|2}}
References
- {{citation | first=Yuri | last=Bilu | title=Catalan's conjecture (after Mihăilescu) | journal=Astérisque | volume=294 | year=2004 | pages=vii, 1–26 | mr=2111637 }}
- {{citation | last=Catalan | first=Eugene | year=1844 | title=Note extraite d'une lettre adressée à l'éditeur | language=fr | journal=J. Reine Angew. Math. | pages=192 | doi=10.1515/crll.1844.27.192 | volume=27 | mr=1578392| url=https://zenodo.org/record/1448842 }}
- {{cite conference | last=Cohen | first=Henri | year=2005 | title=Démonstration de la conjecture de Catalan | language=fr | trans-title=A proof of the Catalan conjecture | conference=Théorie algorithmique des nombres et équations diophantiennes | publisher=Éditions de l'École Polytechnique | mr=222434 | location=Palaiseau | isbn=2-7302-1293-0 | pages=1–83}}
- {{citation | first=Tauno | last=Metsänkylä | title=Catalan's conjecture: another old Diophantine problem solved | journal=Bulletin of the American Mathematical Society | volume=41 | year=2004 | issue=1 | pages=43–57 | doi=10.1090/S0273-0979-03-00993-5 | mr=2015449| url=https://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf | doi-access=free }}
- {{citation | first=Preda | last=Mihăilescu | author-link=Preda Mihăilescu | title=Primary Cyclotomic Units and a Proof of Catalan's Conjecture | journal=J. Reine Angew. Math. | volume=2004 | issue=572 | year=2004 | pages=167–195 | doi=10.1515/crll.2004.048 |mr=2076124}}
- {{citation | first=Preda | last=Mihăilescu | title=Reflection, Bernoulli numbers and the proof of Catalan's conjecture | journal=European Congress of Mathematics | year=2005 | pages=325–340 | publisher=Eur. Math. Soc. | location=Zurich | mr=2185753 | url=https://www.uni-math.gwdg.de/preda/mihailescu-papers/catber.pdf | archive-url=https://web.archive.org/web/20220626111548/https://www.uni-math.gwdg.de/preda/mihailescu-papers/catber.pdf | archive-date=2022-06-26 | url-status=dead }}
- {{citation | first=Paulo | last=Ribenboim | author-link=Paulo Ribenboim | title=Catalan's Conjecture | publisher=Academic Press, Inc. | location=Boston, MA | year=1994 | isbn=0-12-587170-8 | mr=1259738}} Predates Mihăilescu's proof.
- {{citation | first=Robert | last=Tijdeman | author-link=Robert Tijdeman | title=On the equation of Catalan | journal=Acta Arith. | volume=29 | issue=2 | year=1976 | pages=197–209 | mr=0404137 | doi=10.4064/aa-29-2-197-209| url=https://www.impan.pl/shop/publication/transaction/download/product/100989?download.pdf | doi-access=free }}
External links
- {{MathWorld | urlname=CatalansConjecture | title=Catalan's conjecture}}
- [https://web.archive.org/web/20130122060110/http://www.maa.org/mathland/mathtrek_06_24_02.html Ivars Peterson's MathTrek]
- [http://www.math.ubc.ca/~bennett/paper19.pdf On difference of perfect powers]
- Jeanine Daems: [https://web.archive.org/web/20060221125555/http://www.math.leidenuniv.nl/~jdaems/scriptie/Catalan.pdf A Cyclotomic Proof of Catalan's Conjecture]
{{Authority control}}
Category:Conjectures that have been proved
Category:Diophantine equations