Category O
In the representation theory of semisimple Lie algebras, Category O (or category ) is a category whose objects are certain representations of a semisimple Lie algebra and morphisms are homomorphisms of representations.
Introduction
Assume that is a (usually complex) semisimple Lie algebra with a Cartan subalgebra
, is a root system and is a system of positive roots. Denote by
the root space corresponding to a root and a nilpotent subalgebra.
If is a -module and , then is the weight space
:
Definition of category O
The objects of category are -modules such that
- is finitely generated
- is locally -finite. That is, for each , the -module generated by is finite-dimensional.
Morphisms of this category are the -homomorphisms of these modules.
Basic properties
{{Expand section|date=September 2011}}
- Each module in a category O has finite-dimensional weight spaces.
- Each module in category O is a Noetherian module.
- O is an abelian category
- O has enough projectives and injectives.
- O is closed under taking submodules, quotients and finite direct sums.
- Objects in O are -finite, i.e. if is an object and , then the subspace generated by under the action of the center of the universal enveloping algebra, is finite-dimensional.
Examples
{{Expand section|date=September 2011}}
- All finite-dimensional -modules and their -homomorphisms are in category O.
- Verma modules and generalized Verma modules and their -homomorphisms are in category O.
See also
References
- {{Citation | last1=Humphreys | first1=James E. | author1-link=James E. Humphreys | title=Representations of semisimple Lie algebras in the BGG category O | publisher=AMS | year=2008 | isbn=978-0-8218-4678-0 | url=http://www.math.umass.edu/~jeh/bgg/main.pdf | url-status=dead | archiveurl=https://web.archive.org/web/20120321142849/http://www.math.umass.edu/~jeh/bgg/main.pdf | archivedate=2012-03-21 }}