Cauchy–Hadamard theorem
{{Short description|A theorem that determines the radius of convergence of a power series.}}
In mathematics, the Cauchy–Hadamard theorem is a result in complex analysis named after the French mathematicians Augustin Louis Cauchy and Jacques Hadamard, describing the radius of convergence of a power series. It was published in 1821 by Cauchy,{{citation|first=A. L.|last=Cauchy|author-link=Augustin Louis Cauchy|title=Analyse algébrique|year=1821}}. but remained relatively unknown until Hadamard rediscovered it.{{citation|title=The Higher Calculus: A History of Real and Complex Analysis from Euler to Weierstrass|first=Umberto|last=Bottazzini| publisher=Springer-Verlag|year=1986|isbn=978-0-387-96302-0|pages=[https://archive.org/details/highercalculushi0000bott/page/116 116–117]|url=https://archive.org/details/highercalculushi0000bott/page/116}}. Translated from the Italian by Warren Van Egmond. Hadamard's first publication of this result was in 1888;{{citation|first=J.|last=Hadamard|author-link=Jacques Hadamard|title=Sur le rayon de convergence des séries ordonnées suivant les puissances d'une variable|journal=C. R. Acad. Sci. Paris|volume=106|pages=259–262}}. he also included it as part of his 1892 Ph.D. thesis.{{citation| first=J.|last=Hadamard|author-link=Jacques Hadamard|title=Essai sur l'étude des fonctions données par leur développement de Taylor| url=https://archive.org/details/essaisurltuded00hadauoft| journal=Journal de Mathématiques Pures et Appliquées|series= 4e Série|volume=VIII|year=1892}}. Also in Thèses présentées à la faculté des sciences de Paris pour obtenir le grade de docteur ès sciences mathématiques, Paris: Gauthier-Villars et fils, 1892.
Theorem for one complex variable
Consider the formal power series in one complex variable z of the form
where
Then the radius of convergence of f at the point a is given by
where {{math|lim sup}} denotes the limit superior, the limit as {{mvar|n}} approaches infinity of the supremum of the sequence values after the nth position. If the sequence values is unbounded so that the {{math|lim sup}} is ∞, then the power series does not converge near {{math|a}}, while if the {{math|lim sup}} is 0 then the radius of convergence is ∞, meaning that the series converges on the entire plane.
=Proof=
Without loss of generality assume that . We will show first that the power series converges for
First suppose
For any
\geq t+\varepsilonc_n
Now
Conversely, for
Theorem for several complex variables
Let
of the multidimensional power series
=Proof=
Set
:
This is a power series in one variable
:
Setting
:
Because
:
Therefore
:
Notes
{{reflist}}
External links
- {{MathWorld|urlname=Cauchy-HadamardTheorem|title=Cauchy-Hadamard theorem}}
{{Authority control}}
{{DEFAULTSORT:Cauchy-Hadamard theorem}}