Cauchy formula for repeated integration

{{Short description|Method in mathematics}}

{{no footnotes|date=May 2024}}

The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives.

Scalar case

Let f be a continuous function on the real line. Then the nth repeated integral of f with base-point a,

f^{(-n)}(x) = \int_a^x \int_a^{\sigma_1} \cdots \int_a^{\sigma_{n-1}} f(\sigma_{n}) \, \mathrm{d}\sigma_{n} \cdots \, \mathrm{d}\sigma_2 \, \mathrm{d}\sigma_1,

is given by single integration

f^{(-n)}(x) = \frac{1}{(n-1)!} \int_a^x\left(x-t\right)^{n-1} f(t)\,\mathrm{d}t.

=Proof=

A proof is given by induction. The base case with n = 1 is trivial, since it is equivalent to

f^{(-1)}(x) = \frac1{0!} \int_a^x {(x - t)^0} f(t)\,\mathrm{d}t = \int_a^x f(t)\,\mathrm{d}t.

Now, suppose this is true for n, and let us prove it for n + 1. Firstly, using the Leibniz integral rule, note that

\frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{1}{n!} \int_a^x (x - t)^n f(t)\,\mathrm{d}t \right] =

\frac{1}{(n - 1)!} \int_a^x (x - t)^{n-1} f(t)\,\mathrm{d}t.

Then, applying the induction hypothesis,

\begin{align}

f^{-(n+1)}(x) &= \int_a^x \int_a^{\sigma_1} \cdots \int_a^{\sigma_n} f(\sigma_{n+1}) \,\mathrm{d}\sigma_{n+1} \cdots \,\mathrm{d}\sigma_2 \,\mathrm{d}\sigma_1 \\

&= \int_a^x \left[\int_a^{\sigma_1} \cdots \int_a^{\sigma_n} f(\sigma_{n+1}) \,\mathrm{d}\sigma_{n+1} \cdots \,\mathrm{d}\sigma_2 \right] \,\mathrm{d}\sigma_1.

\end{align}

Note that the term within square bracket has n-times successive integration, and upper limit of outermost integral inside the square bracket is \sigma_1. Thus, comparing with the case for n = n and replacing x, \sigma_1, \cdots, \sigma_n of the formula at induction step n = n with \sigma_1, \sigma_2, \cdots, \sigma_{n+1} respectively leads to

\int_a^{\sigma_1} \cdots \int_a^{\sigma_n} f(\sigma_{n+1}) \,\mathrm{d}\sigma_{n+1} \cdots \,\mathrm{d}\sigma_2 = \frac{1}{(n - 1)!} \int_a^{\sigma_1} (\sigma_1 - t)^{n-1} f(t)\,\mathrm{d}t.

Putting this expression inside the square bracket results in

\begin{align}

&= \int_a^x \frac{1}{(n - 1)!} \int_a^{\sigma_1} (\sigma_1 - t)^{n-1} f(t)\,\mathrm{d}t\,\mathrm{d}\sigma_1 \\

&= \int_a^x \frac{\mathrm{d}}{\mathrm{d}\sigma_1} \left[\frac{1}{n!} \int_a^{\sigma_1} (\sigma_1 - t)^n f(t)\,\mathrm{d}t\right] \,\mathrm{d}\sigma_1 \\

&= \frac{1}{n!} \int_a^x (x - t)^n f(t)\,\mathrm{d}t.

\end{align}

  • It has been shown that this statement holds true for the base case n = 1.
  • If the statement is true for n = k, then it has been shown that the statement holds true for n = k + 1.
  • Thus this statement has been proven true for all positive integers.

This completes the proof.

Generalizations and applications

The Cauchy formula is generalized to non-integer parameters by the Riemann–Liouville integral, where n \in \Z_{\geq 0} is replaced by \alpha \in \Complex,\ \Re(\alpha) > 0, and the factorial is replaced by the gamma function. The two formulas agree when \alpha \in \Z_{\geq 0}.

Both the Cauchy formula and the Riemann–Liouville integral are generalized to arbitrary dimensions by the Riesz potential.

In fractional calculus, these formulae can be used to construct a differintegral, allowing one to differentiate or integrate a fractional number of times. Differentiating a fractional number of times can be accomplished by fractional integration, then differentiating the result.

References

  • Augustin-Louis Cauchy: [https://gallica.bnf.fr/ark:/12148/bpt6k62404287/f150.item Trente-Cinquième Leçon]. In: Résumé des leçons données à l’Ecole royale polytechnique sur le calcul infinitésimal. Imprimerie Royale, Paris 1823. Reprint: Œuvres complètes II(4), Gauthier-Villars, Paris, pp. 5–261.
  • Gerald B. Folland, Advanced Calculus, p. 193, Prentice Hall (2002). {{ISBN|0-13-065265-2}}