Cauchy formula for repeated integration
{{Short description|Method in mathematics}}
{{no footnotes|date=May 2024}}
The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula). For non-integer n it yields the definition of fractional integrals and (with n < 0) fractional derivatives.
Scalar case
Let f be a continuous function on the real line. Then the nth repeated integral of f with base-point a,
is given by single integration
=Proof=
A proof is given by induction. The base case with n = 1 is trivial, since it is equivalent to
f^{(-1)}(x) = \frac1{0!} \int_a^x {(x - t)^0} f(t)\,\mathrm{d}t = \int_a^x f(t)\,\mathrm{d}t.
Now, suppose this is true for n, and let us prove it for n + 1. Firstly, using the Leibniz integral rule, note that
\frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{1}{n!} \int_a^x (x - t)^n f(t)\,\mathrm{d}t \right] =
\frac{1}{(n - 1)!} \int_a^x (x - t)^{n-1} f(t)\,\mathrm{d}t.
Then, applying the induction hypothesis,
f^{-(n+1)}(x) &= \int_a^x \int_a^{\sigma_1} \cdots \int_a^{\sigma_n} f(\sigma_{n+1}) \,\mathrm{d}\sigma_{n+1} \cdots \,\mathrm{d}\sigma_2 \,\mathrm{d}\sigma_1 \\
&= \int_a^x \left[\int_a^{\sigma_1} \cdots \int_a^{\sigma_n} f(\sigma_{n+1}) \,\mathrm{d}\sigma_{n+1} \cdots \,\mathrm{d}\sigma_2 \right] \,\mathrm{d}\sigma_1.
\end{align}
Note that the term within square bracket has n-times successive integration, and upper limit of outermost integral inside the square bracket is . Thus, comparing with the case for n = n and replacing of the formula at induction step n = n with respectively leads to
\int_a^{\sigma_1} \cdots \int_a^{\sigma_n} f(\sigma_{n+1}) \,\mathrm{d}\sigma_{n+1} \cdots \,\mathrm{d}\sigma_2 = \frac{1}{(n - 1)!} \int_a^{\sigma_1} (\sigma_1 - t)^{n-1} f(t)\,\mathrm{d}t.
Putting this expression inside the square bracket results in
&= \int_a^x \frac{1}{(n - 1)!} \int_a^{\sigma_1} (\sigma_1 - t)^{n-1} f(t)\,\mathrm{d}t\,\mathrm{d}\sigma_1 \\
&= \int_a^x \frac{\mathrm{d}}{\mathrm{d}\sigma_1} \left[\frac{1}{n!} \int_a^{\sigma_1} (\sigma_1 - t)^n f(t)\,\mathrm{d}t\right] \,\mathrm{d}\sigma_1 \\
&= \frac{1}{n!} \int_a^x (x - t)^n f(t)\,\mathrm{d}t.
\end{align}
- It has been shown that this statement holds true for the base case .
- If the statement is true for , then it has been shown that the statement holds true for .
- Thus this statement has been proven true for all positive integers.
This completes the proof.
Generalizations and applications
The Cauchy formula is generalized to non-integer parameters by the Riemann–Liouville integral, where is replaced by , and the factorial is replaced by the gamma function. The two formulas agree when .
Both the Cauchy formula and the Riemann–Liouville integral are generalized to arbitrary dimensions by the Riesz potential.
In fractional calculus, these formulae can be used to construct a differintegral, allowing one to differentiate or integrate a fractional number of times. Differentiating a fractional number of times can be accomplished by fractional integration, then differentiating the result.
References
- Augustin-Louis Cauchy: [https://gallica.bnf.fr/ark:/12148/bpt6k62404287/f150.item Trente-Cinquième Leçon]. In: Résumé des leçons données à l’Ecole royale polytechnique sur le calcul infinitésimal. Imprimerie Royale, Paris 1823. Reprint: Œuvres complètes II(4), Gauthier-Villars, Paris, pp. 5–261.
- Gerald B. Folland, Advanced Calculus, p. 193, Prentice Hall (2002). {{ISBN|0-13-065265-2}}
External links
- {{cite web|author=Alan Beardon| url=http://nrich.maths.org/public/viewer.php?obj_id=1369| title=Fractional calculus II| publisher=University of Cambridge| year=2000}}
- {{cite web|author=Maurice Mischler| url=https://sites.google.com/site/mathmontmus/accueil/pages-math%C3%A9matiques-dures/int%C3%A9grales-ni%C3%A8mes-et-polyn%C3%B4mes-sympas| title= About some repeated integrals and associated polynomials| year=2023}}