Chern–Simons form
{{Short description|Secondary characteristic classes of 3-manifolds}}
In mathematics, the Chern–Simons forms are certain secondary characteristic classes.{{Cite web|title=Remarks on Chern–Simons theory|url=https://www.ams.org/journals/bull/2009-46-02/S0273-0979-09-01243-9/S0273-0979-09-01243-9.pdf|last=Freed|first=Daniel|date=January 15, 2009|access-date=April 1, 2020}} The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose.{{Cite book|last1=Chern|first1=Shiing-Shen|url=https://books.google.com/books?id=uOfSa0sfJr0C&q=Characteristic+Forms+and+Geometric+Invariants&pg=PA363|title=A Mathematician and His Mathematical Work: Selected Papers of S.S. Chern|last2=Tian|first2=G.|last3=Li|first3=Peter|date=1996|publisher=World Scientific|isbn=978-981-02-2385-4|language=en}}
Definition
Given a manifold and a Lie algebra valued 1-form over it, we can define a family of p-forms:{{Cite web|title=Chern-Simons form in nLab|url=https://ncatlab.org/nlab/show/Chern-Simons+form|website=ncatlab.org|access-date=May 1, 2020}}
In one dimension, the Chern–Simons 1-form is given by
:
In three dimensions, the Chern–Simons 3-form is given by
:
In five dimensions, the Chern–Simons 5-form is given by
:
\begin{align}
& \operatorname{Tr} \left[ \mathbf{F}\wedge\mathbf{F} \wedge \mathbf{A}-\frac{1}{2} \mathbf{F} \wedge\mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} +\frac{1}{10} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge\mathbf{A} \right] \\[6pt]
= {} & \operatorname{Tr} \left[ d\mathbf{A}\wedge d\mathbf{A} \wedge \mathbf{A} + \frac{3}{2} d\mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A} +\frac{3}{5} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A}\wedge\mathbf{A}\wedge\mathbf{A} \right]
\end{align}
where the curvature F is defined as
:
The general Chern–Simons form is defined in such a way that
:
where the wedge product is used to define Fk. The right-hand side of this equation is proportional to the k-th Chern character of the connection .
In general, the Chern–Simons p-form is defined for any odd p.{{Cite web|title=Introduction To Chern-Simons Theories|url=http://www.physics.rutgers.edu/~gmoore/TASI-ChernSimons-StudentNotes.pdf|last=Moore|first=Greg|date=June 7, 2019|website=University of Texas|access-date=June 7, 2019}}
Application to physics
In 1978, Albert Schwarz formulated Chern–Simons theory, early topological quantum field theory, using Chern-Simons forms.{{cite journal |last=Schwartz |first=A. S. |year=1978 |title=The partition function of degenerate quadratic functional and Ray-Singer invariants |journal=Letters in Mathematical Physics |volume=2 |issue=3 |pages=247–252 |doi=10.1007/BF00406412 |bibcode=1978LMaPh...2..247S |s2cid=123231019 }}
In the gauge theory, the integral of Chern-Simons form is a global geometric invariant, and is typically gauge invariant modulo addition of an integer.
See also
References
{{Reflist}}
Further reading
- {{cite journal |last1=Chern |first1=S.-S. |author-link1=Shiing-Shen Chern |last2=Simons |first2=J. |author-link2=James Harris Simons |title=Characteristic forms and geometric invariants |journal=Annals of Mathematics |series=Second Series |volume=99 |number=1 |year=1974 |pages=48–69 |jstor=1971013 |doi=10.2307/1971013 }}
- {{cite book |first=Reinhold A. |last=Bertlmann |chapter=Chern–Simons form, homotopy operator and anomaly |title=Anomalies in Quantum Field Theory |publisher=Clarendon Press |year=2001 |edition=Revised |pages=321–341 |isbn=0-19-850762-3 |chapter-url=https://books.google.com/books?id=FC_DRRUHFXEC&pg=PA321 }}
{{String theory topics |state=collapsed}}
{{DEFAULTSORT:Chern-Simons form}}