Chinese monoid

In mathematics, the Chinese monoid is a monoid generated by a totally ordered alphabet with the relations cba = cab = bca for every abc. An algorithm similar to Schensted's algorithm yields characterisation of the equivalence classes and a cross-section theorem. It was discovered by {{harvtxt|Duchamp|Krob|1994}} during their classification of monoids with growth similar to that of the plactic monoid, and studied in detail by Julien Cassaigne, Marc Espie, Daniel Krob, Jean-Christophe Novelli, and Florent Hivert in 2001.{{Citation |last1=Cassaigne |first1=Julien |last2=Espie |first2=Marc |last3=Krob |first3=Daniel |last4=Novelli |first4=Jean-Christophe |last5=Hivert |first5=Florent | title=The Chinese monoid |url=http://www.worldscinet.com/ijac/11/1103/S0218196701000425.html | doi=10.1142/S0218196701000425 | mr=1847182 | zbl=1024.20046 | year=2001 | journal=International Journal of Algebra and Computation | issn=0218-1967 | volume=11 | issue=3 | pages=301–334}}

The Chinese monoid has a regular language cross-section

: a^* \ (ba)^*b^* \ (ca)^*(cb)^* c^* \cdots

and hence polynomial growth of dimension \frac{n(n+1)}{2}.{{citation | last1=Jaszuńska | first1=Joanna | last2=Okniński | first2=Jan | title=Structure of Chinese algebras. | zbl=1246.16022 | journal=J. Algebra | volume=346 | number=1 | pages=31–81 | issn=0021-8693 | arxiv=1009.5847| year=2011 | doi=10.1016/j.jalgebra.2011.08.020| s2cid=119280148 }}

The Chinese monoid equivalence class of a permutation is the preimage of an involution under the map w \mapsto w \circ w^{-1} where \circ denotes the product in the Iwahori-Hecke algebra with q_s = 0.{{Cite journal|last1=Hamaker|first1=Zachary|last2=Marberg|first2=Eric|last3=Pawlowski|first3=Brendan|date=2017-05-01|title=Involution words II: braid relations and atomic structures|url=https://doi.org/10.1007/s10801-016-0722-6|journal=Journal of Algebraic Combinatorics|language=en|volume=45|issue=3|pages=701–743|doi=10.1007/s10801-016-0722-6|issn=1572-9192|arxiv=1601.02269|s2cid=119330473}}

See also

References

{{reflist}}

  • {{Citation | last1=Duchamp | first1=Gérard | last2=Krob | first2=Daniel | title=Words, languages and combinatorics, II (Kyoto, 1992) | publisher=World Sci. Publ., River Edge, NJ | mr=1351284 | zbl=0875.68720 | year=1994 | chapter=Plactic-growth-like monoids | pages=124–142 |chapter-url=http://www.liafa.jussieu.fr/web9/rapportrech/description_en.php?idrapportrech=487}}

Category:Combinatorics

Category:Semigroup theory

{{combin-stub}}

{{abstract-algebra-stub}}