Chiral algebra

{{format footnotes |date=May 2024}}

In mathematics, a chiral algebra is an algebraic structure introduced by {{harvtxt|Beilinson|Drinfeld|2004}} as a rigorous version of the rather vague concept of a chiral algebra in physics. In Chiral Algebras, Beilinson and Drinfeld introduced the notion of chiral algebra, which based on the pseudo-tensor category of D-modules. They give a 'coordinate independent' notion of vertex algebras, which are based on formal power series. Chiral algebras on curves are essentially conformal vertex algebras.

Definition

A chiral algebra{{cite book |last1=Ben-Zvi |first1=David |last2=Frenkel |first2=Edward |title=Vertex algebras and algebraic curves |date=2004 |publisher=American Mathematical Society |location=Providence, Rhode Island |isbn=9781470413156 |page=339 |edition=Second}} on a smooth algebraic curve X is a right D-module \mathcal{A}, equipped with a D-module homomorphism

\mu : \mathcal{A} \boxtimes \mathcal{A}(\infty \Delta) \rightarrow \Delta_! \mathcal{A}

on X^2 and with an embedding \Omega \hookrightarrow \mathcal{A}, satisfying the following conditions

  • \mu = -\sigma_{12} \circ \mu \circ \sigma_{12} (Skew-symmetry)
  • \mu_{1\{23\}} = \mu_{\{12\}3} + \mu_{2\{13\}} (Jacobi identity)
  • The unit map is compatible with the homomorphism \mu_\Omega: \Omega \boxtimes \Omega (\infty \Delta) \rightarrow \Delta_!\Omega; that is, the following diagram commutes

\begin{array}{lcl}

& \Omega \boxtimes \mathcal{A}(\infty\Delta) & \rightarrow & \mathcal{A} \boxtimes \mathcal{A}(\infty \Delta) & \\

& \downarrow && \downarrow \\

& \Delta_!\mathcal A & \rightarrow & \Delta_! \mathcal A & \\

\end{array}

Where, for sheaves \mathcal{M}, \mathcal{N} on X, the sheaf \mathcal{M}\boxtimes\mathcal{N}(\infty \Delta) is the sheaf on X^2 whose sections are sections of the external tensor product \mathcal{M}\boxtimes\mathcal{N} with arbitrary poles on the diagonal:

\mathcal M \boxtimes \mathcal N (\infty \Delta) = \varinjlim \mathcal{M} \boxtimes \mathcal{N} (n \Delta),

\Omega is the canonical bundle, and the 'diagonal extension by delta-functions' \Delta_! is

\Delta_!\mathcal{M} = \frac{\Omega \boxtimes \mathcal{M}(\infty \Delta)}{\Omega \boxtimes \mathcal{M}}.

Relation to other algebras

= Vertex algebra =

The category of vertex algebras as defined by Borcherds or Kac is equivalent to the category of chiral algebras on X = \mathbb{A}^1 equivariant with respect to the group T of translations.

= Factorization algebra =

Chiral algebras can also be reformulated as factorization algebras.

See also

References

  • {{Citation | last1=Beilinson|first1=Alexander|authorlink1=Alexander Beilinson|last2=Drinfeld|first2=Vladimir|authorlink2=Vladimir Drinfeld | title=Chiral algebras | url=https://books.google.com/books?id=yHZh3p-kFqQC | publisher=American Mathematical Society | location=Providence, R.I. | series=American Mathematical Society Colloquium Publications | isbn=978-0-8218-3528-9 | mr=2058353 | year=2004 | volume=51}}

{{reflist}}

Further reading

  • {{cite journal |last1=Francis |first1=John |last2=Gaitsgory |first2=Dennis |title=Chiral Koszul duality |journal=Sel. Math. |series=New Series |volume=18 |year=2012 |issue=1 |pages=27–87 |doi=10.1007/s00029-011-0065-z |url=http://nrs.harvard.edu/urn-3:HUL.InstRepos:10043337 |arxiv=1103.5803 |s2cid=8316715 }}

Category:Conformal field theory

Category:Representation theory

{{algebra-stub}}