Circle packing in a square#Circle packing in a rectangle

{{short description|Two-dimensional packing problem}}

Circle packing in a square is a packing problem in recreational mathematics where the aim is to pack {{mvar|n}} unit circles into the smallest possible square. Equivalently, the problem is to arrange {{mvar|n}} points in a unit square in order to maximize the minimal separation, {{mvar|d{{sub|n}}}}, between points.{{cite book |title=Unsolved Problems in Geometry |last=Croft |first=Hallard T. |author2=Falconer, Kenneth J. |author3=Guy, Richard K. |year=1991 |publisher=Springer-Verlag |location=New York |isbn=0-387-97506-3 |pages=[https://archive.org/details/unsolvedproblems0000crof/page/108 108–110] |url=https://archive.org/details/unsolvedproblems0000crof/page/108 }} To convert between these two formulations of the problem, the square side for unit circles will be {{math|L {{=}} 2 + {{sfrac|2|dn}}}}.

Solutions

Solutions (proven optimal for {{math|N ≤ 30}}) have been computed for every {{math|N ≤ 10,000}}.{{cite web |url=http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html|title=The best known packings of equal circles in a square |author=Eckard Specht |date=22 Aug 2022 |access-date=4 Mar 2025}} Solutions up to {{math|N {{=}} 20}} are shown below.

The obvious square packing is optimal for 1, 4, 9, 16, 25, and 36 circles (the six smallest square numbers), but ceases to be optimal for larger squares from 49 onwards.

class="wikitable"
Number of circles ({{mvar|n}})

! Square side length ({{mvar|L}})

! {{mvar|dn}}

! Number density ({{math|{{sfrac|n|L2}}}})

! Figure

1

| 2

| ∞

| 0.25

|

2

| 2+\sqrt{2}
≈ 3.414...

| \sqrt{2}
≈ 1.414...

| 0.172...

| 85x85px

3

| 2+\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}
≈ 3.931...

| \sqrt{6} - \sqrt{2}
≈ 1.035...

| 0.194...

| 85x85px

4

| 4

| 1

| 0.25

| 85x85px

5

| 2+2\sqrt{2}
≈ 4.828...

| \frac{\sqrt{2}}{2}
≈ 0.707...

| 0.215...

| 85x85px

6

| 2 + \frac{12}{\sqrt{13}}
≈ 5.328...

| \frac{\sqrt{13}}{6}
≈ 0.601...

| 0.211...

| 85x85px

7

| 4+ \sqrt{3}
≈ 5.732...

| 4- 2\sqrt{3}
≈ 0.536...

| 0.213...

| 85x85px

8

| 2 + \sqrt{2} + \sqrt{6}
≈ 5.863...

|\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}
≈ 0.518...

| 0.233...

| 85x85px

9

| 6

| 0.5

| 0.25

| 85x85px

10

| 6.747...

| 0.421... {{OEIS2C|A281065}}

| 0.220...

| 85x85px

11

| 3 + \sqrt{2} + \frac{\sqrt{6}}{2} + \frac{\sqrt{2+4\sqrt{2}}}{2}
≈ 7.022...

| 0.398...

| 0.223...

| 85x85px

12

| 2 + 15\sqrt{\frac{2}{17}}
≈ 7.144...

| \frac{\sqrt{34}}{15}
≈ 0.389...

| 0.235...

| 85x85px

13

| 7.463...

| 0.366...

| 0.233...

| 85x85px

14

| 6 + \sqrt{3}
≈ 7.732...

|\frac{8}{13} - \frac{2\sqrt{3}}{13}
≈ 0.349...

| 0.226...

| 85x85px

15

| 4 + \sqrt{2} + \sqrt{6}
≈ 7.863...

|\frac{1}{2} + \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2}
≈ 0.341...

| 0.243...

| 85x85px

16

| 8

| 0.333...

| 0.25

| 85x85px

17

| 8.532...

| 0.306...

| 0.234...

| 85x85px

18

| 2 + \frac{24}{\sqrt{13}}
≈ 8.656...

| \frac{\sqrt{13}}{12}
≈ 0.300...

| 0.240...

| 85x85px

19

| 8.907...

| 0.290...

| 0.240...

| 85x85px

20

| \frac{130}{17} + \frac{16}{17} \sqrt{2}
≈ 8.978...

|\frac{3}{8} - \frac{\sqrt{2}}{16}
≈ 0.287...

| 0.248...

| 85x85px

Circle packing in a rectangle

Dense packings of circles in non-square rectangles have also been the subject of investigations.{{cite journal | last1=Lubachevsky | first1=Boris D. | last2=Graham | first2=Ronald L. | title=Minimum perimeter rectangles that enclose congruent non-overlapping circles | journal=Discrete Mathematics | publisher=Elsevier BV | volume=309 | issue=8 | year=2009 | issn=0012-365X | doi=10.1016/j.disc.2008.03.017 | pages=1947–1962| s2cid=783236 | doi-access=free | arxiv=math/0412443 }}{{cite journal | last=Specht | first=E. | title=High density packings of equal circles in rectangles with variable aspect ratio | journal=Computers & Operations Research | publisher=Elsevier BV | volume=40 | issue=1 | year=2013 | issn=0305-0548 | doi=10.1016/j.cor.2012.05.011 | pages=58–69}}

See also

References

{{Packing problem}}

Category:Circle packing