Classical shadow
{{Short description|Quantum computing protocol}}
{{Orphan|date=July 2021}}
In quantum computing, classical shadow is a protocol for predicting functions of a quantum state using only a logarithmic number of measurements.{{Cite journal | arxiv=2002.08953|last1=Huang |first1=Hsin-Yuan |last2=Kueng |first2=Richard |last3=Preskill|first3=John |title =Predicting many properties of a quantum system from very few measurements|year=2020 |journal=Nat. Phys.|volume=16 | issue=10 |pages=1050–1057|doi=10.1038/s41567-020-0932-7|bibcode=2020NatPh..16.1050H |s2cid=211205098 }} Given an unknown state , a tomographically complete set of gates (e.g. Clifford gates), a set of observables and a quantum channel defined by randomly sampling from , applying it to and measuring the resulting state, predict the expectation values .{{cite journal | arxiv=2011.11580|last1= Koh |first1=D. E. |last2=Grewal|first2= Sabee |title=Classical Shadows with Noise|journal= Quantum |year=2022|volume= 6 |page= 776 |doi= 10.22331/q-2022-08-16-776 |bibcode= 2022Quant...6..776K |s2cid= 227127118 }} A list of classical shadows is created using , and by running a Shadow generation algorithm. When predicting the properties of , a Median-of-means estimation algorithm is used to deal with the outliers in .{{Cite journal | arxiv=2008.05234|last1=Struchalin |first1=G.I. |last2=Zagorovskii |first2=Ya. A. |last3=Kovlakov |first3=E.V. |last4=Straupe | first4=S.S. |last5=Kulik |first5= S.P.|title=Experimental Estimation of Quantum State Properties from Classical Shadows|year=2021 |journal=PRX Quantum|volume=2 | issue=1 |page=010307 |doi=10.1103/PRXQuantum.2.010307|s2cid=221103573 }} Classical shadow is useful for direct fidelity estimation, entanglement verification, estimating correlation functions, and predicting entanglement entropy.
Recently, researchers have built on classical shadow to devise provably efficient classical machine learning algorithms for a wide range of quantum many-body problems.{{cite journal |last1=Huang |first1=Hsin-Yuan |last2=Kueng |first2=Richard |last3=Torlai |first3=Giacomo |last4=Albert |first4=Victor A. |last5=Preskill |first5=John |title=Provably efficient machine learning for quantum many-body problems |journal=Science |year=2022 |volume=377 |issue=6613 |pages=eabk3333 |doi=10.1126/science.abk3333 |pmid=36137032 |arxiv=2106.12627|s2cid=235624289 }} For example, machine learning models could learn to solve ground states of quantum many-body systems and classify quantum phases of matter.
{{Algorithm-begin|name=Shadow generation}}
:Inputs copies of an unknown -qubit state
A list of unitaries that is tomographically complete
A classical description of a quantum channel
- For ranging from to :
- Choose a random unitary from
- Apply to to get a state
- Perform a computational basis measurement on for an outcome
- Classically compute and add it to a list
:Return
{{Algorithm-end}}
{{Algorithm-begin|name=Median-of-means estimation}}
:Inputs A list of observables
A classical shadow
A positive integer that specifies how many linear estimates of to calculate.
:Return A list where
: where and where .
{{Algorithm-end}}
References
{{reflist}}
{{Quantum computing|state=collapsed}}
Category:Quantum information science