Classifying space for SO(n)

In mathematics, the classifying space \operatorname{BSO}(n) for the [https://en.wikipedia.org/?title=Special_orthogonal_group special orthogonal group] \operatorname{SO}(n) is the base space of the universal \operatorname{SO}(n) principal bundle \operatorname{ESO}(n)\rightarrow\operatorname{BSO}(n). This means that \operatorname{SO}(n) principal bundles over a CW complex up to isomorphism are in bijection with homotopy classes of its continuous maps into \operatorname{BSO}(n). The isomorphism is given by pullback.

Definition

There is a canonical inclusion of real oriented Grassmannians given by \widetilde\operatorname{Gr}_n(\mathbb{R}^k)\hookrightarrow\widetilde\operatorname{Gr}_n(\mathbb{R}^{k+1}),

V\mapsto V\times\{0\}. Its colimit is:Milnor & Stasheff 74, section 12.2 The Oriented Universal Bundle on page 151

: \operatorname{BSO}(n)

:=\widetilde\operatorname{Gr}_n(\mathbb{R}^\infty)

:=\lim_{k\rightarrow\infty}\widetilde\operatorname{Gr}_n(\mathbb{R}^k).

Since real oriented Grassmannians can be expressed as a homogeneous space by:

: \widetilde\operatorname{Gr}_n(\mathbb{R}^k)

=\operatorname{SO}(n+k)/(\operatorname{SO}(n)\times\operatorname{SO}(k))

the group structure carries over to \operatorname{BSO}(n).

Simplest classifying spaces

  • Since \operatorname{SO}(1)

\cong 1 is the trivial group, \operatorname{BSO}(1)

\cong\{*\} is the trivial topological space.

  • Since \operatorname{SO}(2)

\cong\operatorname{U}(1), one has \operatorname{BSO}(2)

\cong\operatorname{BU}(1)

\cong\mathbb{C}P^\infty.

Classification of principal bundles

Given a topological space X the set of \operatorname{SO}(n) principal bundles on it up to isomorphism is denoted \operatorname{Prin}_{\operatorname{SO}(n)}(X). If X is a CW complex, then the map:{{cite web |access-date=2024-03-14 |language=en |title=universal principal bundle |url=https://ncatlab.org/nlab/show/universal+principal+bundle |website=nLab}}

: [X,\operatorname{BSO}(n)]\rightarrow\operatorname{Prin}_{\operatorname{SO}(n)}(X),

[f]\mapsto f^*\operatorname{ESO}(n)

is bijective.

Cohomology ring

The cohomology ring of \operatorname{BSO}(n) with coefficients in the field \mathbb{Z}_2 of two elements is generated by the Stiefel–Whitney classes:Milnor & Stasheff, Theorem 12.4.Hatcher 02, Example 4D.6.

: H^*(\operatorname{BSO}(n);\mathbb{Z}_2)

=\mathbb{Z}_2[w_2,\ldots,w_n].

The results holds more generally for every ring with characteristic \operatorname{char}=2.

The cohomology ring of \operatorname{BSO}(n) with coefficients in the field \mathbb{Q} of rational numbers is generated by Pontrjagin classes and Euler class:

: H^*(\operatorname{BSO}(2n);\mathbb{Q})

\cong\mathbb{Q}[p_1,\ldots,p_n,e]/(p_n-e^2),

: H^*(\operatorname{BSO}(2n+1);\mathbb{Q})

\cong\mathbb{Q}[p_1,\ldots,p_n].

Infinite classifying space

The canonical inclusions \operatorname{SO}(n)\hookrightarrow\operatorname{SO}(n+1) induce canonical inclusions \operatorname{BSO}(n)\hookrightarrow\operatorname{BSO}(n+1) on their respective classifying spaces. Their respective colimits are denoted as:

: \operatorname{SO}

:=\lim_{n\rightarrow\infty}\operatorname{SO}(n);

: \operatorname{BSO}

:=\lim_{n\rightarrow\infty}\operatorname{BSO}(n).

\operatorname{BSO} is indeed the classifying space of \operatorname{SO}.

See also

Literature

  • {{cite book|title=Characteristic classes|publisher=Princeton University Press|location=|year=1974|language=|isbn=9780691081229|url=https://www.maths.ed.ac.uk/~v1ranick/papers/milnstas.pdf|doi=10.1515/9781400881826|last=Milnor|first=John|author-link=John Milnor|last2=Stasheff|first2=James|author-link2=James Stasheff}}
  • {{cite book|last=Hatcher|first=Allen|title=Algebraic topology|publisher=Cambridge University Press|location=Cambridge|year=2002|language=|isbn=0-521-79160-X|url=https://pi.math.cornell.edu/~hatcher/AT/ATpage.html}}
  • {{cite book|title=Universal principal bundles and classifying spaces|publisher=|location=|year=August 2001|isbn=|url=https://math.mit.edu/~mbehrens/18.906/prin.pdf|last=Mitchell|first=Stephen|doi=}}

References