Clebsch representation

In physics and mathematics, the Clebsch representation of an arbitrary three-dimensional vector field \boldsymbol{v}(\boldsymbol{x}) is:{{harvtxt|Lamb|1993|pages=248–249}}{{harvtxt|Serrin|1959|pages=169–171}}

\boldsymbol{v} = \boldsymbol{\nabla} \varphi + \psi\, \boldsymbol{\nabla} \chi,

where the scalar fields \varphi(\boldsymbol{x}), \psi(\boldsymbol{x}) and \chi(\boldsymbol{x}) are known as Clebsch potentials{{harvtxt|Benjamin|1984}} or Monge potentials,{{harvtxt|Aris|1962|pages=70–72}} named after Alfred Clebsch (1833–1872) and Gaspard Monge (1746–1818), and \boldsymbol{\nabla} is the gradient operator.

Background

In fluid dynamics and plasma physics, the Clebsch representation provides a means to overcome the difficulties to describe an inviscid flow with non-zero vorticity – in the Eulerian reference frame – using Lagrangian mechanics and Hamiltonian mechanics.{{harvtxt|Clebsch|1859}}{{harvtxt|Bateman|1929}}{{harvtxt|Seliger|Whitham|1968}} At the critical point of such functionals the result is the Euler equations, a set of equations describing the fluid flow. Note that the mentioned difficulties do not arise when describing the flow through a variational principle in the Lagrangian reference frame. In case of surface gravity waves, the Clebsch representation leads to a rotational-flow form of Luke's variational principle.{{harvtxt|Luke|1967}}

For the Clebsch representation to be possible, the vector field \boldsymbol{v} has (locally) to be bounded, continuous and sufficiently smooth. For global applicability \boldsymbol{v} has to decay fast enough towards infinity.{{harvtxt|Wesseling|2001|page=7}} The Clebsch decomposition is not unique, and (two) additional constraints are necessary to uniquely define the Clebsch potentials. Since \psi\boldsymbol{\nabla}\chi is in general not solenoidal, the Clebsch representation does not in general satisfy the Helmholtz decomposition.{{harvtxt|Wu|Ma|Zhou|2007|page=43}}

Vorticity

The vorticity \boldsymbol{\omega}(\boldsymbol{x}) is equal to

\boldsymbol{\omega}

= \boldsymbol{\nabla}\times\boldsymbol{v}

= \boldsymbol{\nabla}\times\left( \boldsymbol{\nabla} \varphi + \psi\, \boldsymbol{\nabla} \chi\right)

= \boldsymbol{\nabla}\psi \times \boldsymbol{\nabla}\chi,

with the last step due to the vector calculus identity \boldsymbol{\nabla} \times (\psi \boldsymbol{A})=\psi(\boldsymbol{\nabla}\times\boldsymbol{A})+\boldsymbol{\nabla}\psi\times\boldsymbol{A}. So the vorticity \boldsymbol{\omega} is perpendicular to both \boldsymbol{\nabla}\psi and \boldsymbol{\nabla}\chi, while further the vorticity does not depend on \varphi.

Notes

{{reflist}}

References

{{refbegin|30em}}

  • {{Citation | first=R. | last=Aris | author-link=Rutherford Aris | title=Vectors, tensors, and the basic equations of fluid mechanics | publisher=Prentice-Hall | year=1962 | oclc=299650765 }}
  • {{Citation | last=Bateman | first=H. | author-link=Harry Bateman | title=Notes on a differential equation which occurs in the two-dimensional motion of a compressible fluid and the associated variational problems | volume=125 | issue=799 | pages=598–618 | year=1929 | doi=10.1098/rspa.1929.0189 | journal=Proceedings of the Royal Society of London A | bibcode=1929RSPSA.125..598B | doi-access=free }}
  • {{Citation | last=Benjamin | first=T. Brooke | author-link=Brooke Benjamin | title=Impulse, flow force and variational principles | journal=IMA Journal of Applied Mathematics | volume=32 | issue=1–3 | year=1984 | pages=3–68 | doi=10.1093/imamat/32.1-3.3 | bibcode=1984JApMa..32....3B }}
  • {{Citation | title=Ueber die Integration der hydrodynamischen Gleichungen | first=A. | last=Clebsch | s2cid=122730522 | author-link=Alfred Clebsch | year=1859 | journal=Journal für die Reine und Angewandte Mathematik | volume=1859 | issue=56 | pages=1–10 | doi=10.1515/crll.1859.56.1 | url=https://zenodo.org/record/1448884 }}
  • {{Citation | title = Hydrodynamics | first = H. | last = Lamb | author-link = Horace Lamb | year = 1993 | publisher = Dover | edition = 6th | isbn = 978-0-486-60256-1 }}
  • {{Citation | first=J.C. | last=Luke | year=1967 | title=A variational principle for a fluid with a free surface | journal=Journal of Fluid Mechanics | volume=27 | issue=2 | pages=395–397 | doi=10.1017/S0022112067000412 | bibcode=1967JFM....27..395L | s2cid=123409273 }}
  • {{Cite encyclopedia | encyclopedia=Encyclopedia of Mathematical Physics | volume=2 | pages=593–600 | year=2006 | title=Hamiltonian fluid mechanics | first=P.J. | last=Morrison | author-link=Philip J. Morrison | chapter-url=http://web2.ph.utexas.edu/~morrison/06EMP_morrison.pdf | publisher=Elsevier | doi=10.1016/B0-12-512666-2/00246-7 | chapter=Hamiltonian Fluid Dynamics | isbn=9780125126663 }}
  • {{Citation | first=H. | last=Rund | author-link=Hanno Rund | chapter=Generalized Clebsch representations on manifolds | title=Topics in differential geometry | publisher=Academic Press | pages=111–133 | year=1976 | isbn=978-0-12-602850-8

}}

  • {{Citation | journal=Annual Review of Fluid Mechanics | volume=20 | pages=225–256 | year=1988 | doi=10.1146/annurev.fl.20.010188.001301 | title=Hamiltonian fluid mechanics | first=R. | last=Salmon | bibcode = 1988AnRFM..20..225S | url=https://zenodo.org/record/1063670 }}
  • {{Citation | title=Variational principles in continuum mechanics | first1=R.L. | last1=Seliger | first2=G.B. | last2=Whitham | s2cid=119565234 | author2-link=Gerald Whitham | journal=Proceedings of the Royal Society of London A | year=1968 | volume=305 | issue=1440 | pages=1–25 | doi=10.1098/rspa.1968.0103 | bibcode=1968RSPSA.305....1S }}
  • {{Citation | contribution=Mathematical principles of classical fluid mechanics | first=J. | last=Serrin | author-link=James Serrin | editor1-first=S. | editor1-last=Flügge | editor1-link=Siegfried Flügge | editor2-first=C. | editor2-last=Truesdell | editor2-link=Clifford Truesdell | series=Encyclopedia of Physics / Handbuch der Physik | title=Strömungsmechanik I | trans-title=Fluid Dynamics I | volume=VIII/1 | year=1959 | pages=125–263 | doi=10.1007/978-3-642-45914-6_2 | mr=0108116 | zbl=0102.40503 | bibcode=1959HDP.....8..125S | isbn=978-3-642-45916-0 }}
  • {{Citation | title=Principles of computational fluid dynamics | first=P. | last=Wesseling | publisher=Springer | year=2001 | isbn=978-3-540-67853-3 }}
  • {{Citation | last1=Wu | first1=J.-Z. | first2=H.-Y. | last2=Ma | first3=M.-D. | last3=Zhou | title=Vorticity and vortex dynamics | publisher=Springer | year=2007 | isbn=978-3-540-29027-8 }}

{{refend}}

Category:Vector calculus

Category:Fluid dynamics

Category:Plasma theory and modeling