Component theorem
{{short description|Classification of finite simple groups}}
In the mathematical classification of finite simple groups, the component theorem of {{harvs|txt|last=Aschbacher|year1=1975|year2=1976}} shows that if G is a simple group of odd type, and various other assumptions are satisfied, then G has a centralizer of an involution with a "standard component" with small centralizer.
References
- {{Citation | last1=Aschbacher | first1=Michael | author1-link=Michael Aschbacher | title=On finite groups of component type | url=http://projecteuclid.org/euclid.ijm/1256050927 | mr=0376843 | year=1975 | journal=Illinois Journal of Mathematics | issn=0019-2082 | volume=19 | pages=87–115| doi=10.1215/ijm/1256050927 | doi-access=free }}
- {{Citation | last1=Aschbacher | first1=Michael | author1-link=Michael Aschbacher | title=Tightly embedded subgroups of finite groups | doi=10.1016/0021-8693(76)90028-4 | mr=0422400 | year=1976 | journal=Journal of Algebra | issn=0021-8693 | volume=42 | issue=1 | pages=85–101| doi-access= }}
Category:Theorems about finite groups
{{Abstract-algebra-stub}}