Compound of five truncated cubes
{{Short description|Polyhedral compound}}
class=wikitable style="float:right; margin-left:8px; width:250px"
!bgcolor=#e7dcc3 colspan=2|Compound of five truncated cubes | |
align=center colspan=2|200px | |
bgcolor=#e7dcc3|Type | Uniform compound |
bgcolor=#e7dcc3|Index | UC57 |
bgcolor=#e7dcc3|Polyhedra | 5 truncated cubes |
bgcolor=#e7dcc3|Faces | 40 triangles, 30 octagons |
bgcolor=#e7dcc3|Edges | 180 |
bgcolor=#e7dcc3|Vertices | 120 |
bgcolor=#e7dcc3|Symmetry group | icosahedral (Ih) |
bgcolor=#e7dcc3|Subgroup restricting to one constituent | pyritohedral (Th) |
This uniform polyhedron compound is a composition of 5 truncated cubes, formed by truncating each of the cubes in the compound of 5 cubes.
Cartesian coordinates
Cartesian coordinates for the vertices of this compound are all the cyclic permutations of
: (±(2+{{radic|2}}), ±{{radic|2}}, ±(2+{{radic|2}}))
: (±τ, ±(τ−1+τ−1{{radic|2}}), ±(2τ−1+τ{{radic|2}}))
: (±1, ±(τ−2−τ−1{{radic|2}}), ±(τ2+τ{{radic|2}}))
: (±(1+{{radic|2}}), ±(−τ−2−{{radic|2}}), ±(τ2+{{radic|2}}))
: (±(τ+τ{{radic|2}}), ±(−τ−1), ±(2τ−1+τ−1{{radic|2}}))
where τ = (1+{{radic|5}})/2 is the golden ratio (sometimes written φ).
References
- {{citation|first=John|last=Skilling|title=Uniform Compounds of Uniform Polyhedra|journal=Mathematical Proceedings of the Cambridge Philosophical Society|volume=79|issue=3|pages=447–457|year=1976|doi=10.1017/S0305004100052440|bibcode=1976MPCPS..79..447S |mr=0397554|s2cid=123279687 }}.
{{polyhedron-stub}}