Compound of six decagonal prisms

{{Short description|Polyhedral compound}}

class=wikitable style="float:right; margin-left:8px; width:250px"

!bgcolor=#e7dcc3 colspan=2|Compound of six decagonal prisms

align=center colspan=2|200px
bgcolor=#e7dcc3|TypeUniform compound
bgcolor=#e7dcc3|IndexUC40
bgcolor=#e7dcc3|Polyhedra6 decagonal prisms
bgcolor=#e7dcc3|Faces12 decagons,
60 squares
bgcolor=#e7dcc3|Edges180
bgcolor=#e7dcc3|Vertices120
bgcolor=#e7dcc3|Symmetry groupicosahedral (Ih)
bgcolor=#e7dcc3|Subgroup restricting to one constituent5-fold antiprismatic (D5d)

This uniform polyhedron compound is a symmetric arrangement of 6 decagonal prisms, aligned with the axes of fivefold rotational symmetry of a dodecahedron.

Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the cyclic permutations of

: (±√(τ−1/√5), ±2τ, ±√(τ/√5))

: (±(√(τ−1/√5)−τ2), ±1, ±(√(τ/√5)+τ))

: (±(√(τ−1/√5)−τ), ±τ2, ±(√(τ/√5)+1))

: (±(√(τ−1/√5)+τ), ±τ2, ±(√(τ/√5)−1))

: (±(√(τ−1/√5)+τ2), ±1, ±(√(τ/√5)−τ))

where τ = (1+√5)/2 is the golden ratio (sometimes written φ).

References

Category:Polyhedral compounds

{{polyhedron-stub}}