Compound of ten hexagonal prisms

{{Short description|Polyhedral compound}}

class=wikitable style="float:right; margin-left:8px; width:250px"

!bgcolor=#e7dcc3 colspan=2|Compound of ten hexagonal prisms

align=center colspan=2|200px
bgcolor=#e7dcc3|TypeUniform compound
bgcolor=#e7dcc3|IndexUC39
bgcolor=#e7dcc3|Polyhedra10 hexagonal prisms
bgcolor=#e7dcc3|Faces20 hexagons, 60 squares
bgcolor=#e7dcc3|Edges180
bgcolor=#e7dcc3|Vertices120
bgcolor=#e7dcc3|Symmetry groupicosahedral (Ih)
bgcolor=#e7dcc3|Subgroup restricting to one constituent3-fold antiprismatic (D3d)

This uniform polyhedron compound is a symmetric arrangement of 10 hexagonal prisms, aligned with the axes of three-fold rotational symmetry of an icosahedron.

Cartesian coordinates

Cartesian coordinates for the vertices of this compound are all the cyclic permutations of

: (±{{radic|3}}, ±(τ−1−τ{{radic|3}}), ±(τ+τ−1{{radic|3}}))

: (±2{{radic|3}}, ±τ−1, ±τ)

: (±(1+{{radic|3}}), ±(1−τ{{radic|3}}), ±(1+τ−1{{radic|3}}))

: (±(τ−τ−1{{radic|3}}), ±{{radic|3}}, ±(τ−1+τ{{radic|3}}))

: (±(1−τ−1{{radic|3}}), ±(1−{{radic|3}}), ±(1+τ{{radic|3}}))

where τ = (1+{{radic|5}})/2 is the golden ratio (sometimes written φ).

References

Category:Polyhedral compounds

{{polyhedron-stub}}