Concentration#Molality
{{Short description|Ratio of part of a mixture to the whole}}
{{other uses}}
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration.{{GoldBookRef | file = C01222 | title = concentration}} The concentration can refer to any kind of chemical mixture, but most frequently refers to solutes and solvents in solutions. The molar (amount) concentration has variants, such as normal concentration and osmotic concentration. Dilution is reduction of concentration, e.g. by adding solvent to a solution. The verb to concentrate means to increase concentration, the opposite of dilute.
Etymology
Concentration-, concentratio, action or an act of coming together at a single place, bringing to a common center, was used in post-classical Latin in 1550 or earlier, similar terms attested in Italian (1589), Spanish (1589), English (1606), French (1632).{{Cite OED|concentration|id=38114}}
Qualitative description
Image:Dilution-concentration simple example.jpg
Often in informal, non-technical language, concentration is described in a qualitative way, through the use of adjectives such as "dilute" for solutions of relatively low concentration and "concentrated" for solutions of relatively high concentration. To concentrate a solution, one must add more solute (for example, alcohol), or reduce the amount of solvent (for example, water). By contrast, to dilute a solution, one must add more solvent, or reduce the amount of solute. Unless two substances are miscible, there exists a concentration at which no further solute will dissolve in a solution. At this point, the solution is said to be saturated. If additional solute is added to a saturated solution, it will not dissolve, except in certain circumstances, when supersaturation may occur. Instead, phase separation will occur, leading to coexisting phases, either completely separated or mixed as a suspension. The point of saturation depends on many variables, such as ambient temperature and the precise chemical nature of the solvent and solute.
Concentrations are often called levels, reflecting the mental schema of levels on the vertical axis of a graph, which can be high or low (for example, "high serum levels of bilirubin" are concentrations of bilirubin in the blood serum that are greater than normal).
Quantitative notation
There are four quantities that describe concentration:
=Mass concentration=
=Molar concentration=
{{main|Molar concentration}}
The molar concentration is defined as the amount of a constituent (in moles) divided by the volume of the mixture :
:
The SI unit is mol/m3. However, more commonly the unit mol/L (= mol/dm3) is used.
=Number concentration=
{{main|Number concentration}}
The number concentration is defined as the number of entities of a constituent in a mixture divided by the volume of the mixture :
:
The SI unit is 1/m3.
=Volume concentration=
The volume concentration (not to be confused with volume fraction{{GoldBookRef | file = V06643 | title = volume fraction}}) is defined as the volume of a constituent divided by the volume of the mixture :
:
Being dimensionless, it is expressed as a number, e.g., 0.18 or 18%.
There seems to be no standard notation in the English literature. The letter used here is normative in German literature (see Volumenkonzentration).
Related quantities
=Normality=
{{main|Normality (chemistry)}}
Normality is defined as the molar concentration divided by an equivalence factor . Since the definition of the equivalence factor depends on context (which reaction is being studied), the International Union of Pure and Applied Chemistry and National Institute of Standards and Technology discourage the use of normality.
=Molality=
{{main|Molality}}{{Distinguish|Molarity}}
The molality of a solution is defined as the amount of a constituent (in moles) divided by the mass of the solvent (not the mass of the solution):
:
The SI unit for molality is mol/kg.
=Mole fraction=
{{main|Mole fraction}}
The mole fraction is defined as the amount of a constituent (in moles) divided by the total amount of all constituents in a mixture :
:
The SI unit is mol/mol. However, the deprecated parts-per notation is often used to describe small mole fractions.
=Mole ratio=
{{main|Mixing ratio}}
The mole ratio is defined as the amount of a constituent divided by the total amount of all other constituents in a mixture:
:
If is much smaller than , the mole ratio is almost identical to the mole fraction.
The SI unit is mol/mol. However, the deprecated parts-per notation is often used to describe small mole ratios.
=Mass fraction=
{{main|Mass fraction (chemistry)}}
The mass fraction is the fraction of one substance with mass to the mass of the total mixture , defined as:
:
The SI unit is kg/kg. However, the deprecated parts-per notation is often used to describe small mass fractions.
=Mass ratio=
{{main|Mixing ratio}}
The mass ratio is defined as the mass of a constituent divided by the total mass of all other constituents in a mixture:
:
If is much smaller than , the mass ratio is almost identical to the mass fraction.
The SI unit is kg/kg. However, the deprecated parts-per notation is often used to describe small mass ratios.
Dependence on volume and temperature
Concentration depends on the variation of the volume of the solution with temperature, due mainly to thermal expansion.
See also
- {{annotated link|Dilution ratio}}
- {{annotated link|Dose concentration}}
- {{annotated link|Serial dilution}}
- {{annotated link|Wine/water mixing problem}}
- {{section link|Standard state|Solutes}}
References
{{Reflist}}