Concurrence (quantum computing)

{{Short description|A state invariant involving qubits, in quantum information science}}

In quantum information science, the concurrence is a state invariant involving qubits.

Definition

The concurrence is an entanglement monotone (a way of measuring entanglement) defined for a mixed state of two qubits as:

: \mathcal{C}(\rho)\equiv\max(0,\lambda_1-\lambda_2-\lambda_3-\lambda_4)

in which \lambda_1,...,\lambda_4 are the eigenvalues, in decreasing order, of the Hermitian matrix

:R = \sqrt{\sqrt{\rho}\tilde{\rho}\sqrt{\rho}}

with

:\tilde{\rho} = (\sigma_{y}\otimes\sigma_{y})\rho^{*}(\sigma_{y}\otimes\sigma_{y})

the spin-flipped state of \rho and \sigma_y a Pauli spin matrix. The complex conjugation {}^* is taken in the eigenbasis of the Pauli matrix \sigma_z. Also, here, for a positive semidefinite matrix A, \sqrt {A} denotes a positive semidefinite matrix B such that B^2=A. Note that B is a unique matrix so defined.

A generalized version of concurrence for multiparticle pure states in arbitrary dimensions{{Cite journal|author1=P. Rungta|author2=V. Bužek|author3=C. M. Caves|author4=M. Hillery|author5=G. J. Milburn|year=2001|title=Universal state inversion and concurrence in arbitrary dimensions|journal=Phys. Rev. A|volume=64|issue=4 |pages=042315|doi=10.1103/PhysRevA.64.042315|arxiv=quant-ph/0102040|bibcode=2001PhRvA..64d2315R|s2cid=12594864 }}{{Cite journal|last1=Bhaskara|first1=Vineeth S.|last2=Panigrahi|first2=Prasanta K.|year=2017|title=Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using Lagrange's identity and wedge product|journal=Quantum Information Processing|volume=16|issue=5|pages=118|doi=10.1007/s11128-017-1568-0|arxiv=1607.00164|bibcode=2017QuIP...16..118B|s2cid=43754114 }} (including the case of continuous-variables in infinite dimensions) is defined as:

: \mathcal{C}_{\mathcal{M}}(\rho)=\sqrt{2(1-\text{Tr}\rho^2_{\mathcal{M}})}

in which \rho_{\mathcal{M}} is the reduced density matrix (or its continuous-variable analogue) across the bipartition \mathcal{M} of the pure state, and it measures how much the complex amplitudes deviate from the constraints required for tensor separability. The faithful nature of the measure admits necessary and sufficient conditions of separability for pure states.

Other formulations

Alternatively, the \lambda_{i}'s represent the square roots of the eigenvalues of the non-Hermitian matrix \rho\tilde{\rho}. Note that each \lambda_{i} is a non-negative real number. From the concurrence, the entanglement of formation can be calculated.

Properties

For pure states, the square of the concurrence (also known as the tangle) is a polynomial SL(2,\mathbb{C})^{\otimes 2} invariant in the state's coefficients. For mixed states, the concurrence can be defined by convex roof extension.

For the tangle, there is monogamy of entanglement, that is, the tangle of a qubit with the rest of the system cannot ever exceed the sum of the tangles of qubit pairs which it is part of.

References

{{Reflist|refs=

Scott Hill and William K. Wootters, [https://arxiv.org/abs/quant-ph/9703041 Entanglement of a Pair of Quantum Bits], 1997.

William K. Wootters, [https://dx.doi.org/10.1103/PhysRevLett.80.2245 Entanglement of Formation of an Arbitrary State of Two Qubits] 1998.

Roland Hildebrand, [https://dx.doi.org/10.1063/1.2795840 Concurrence revisited], 2007

D. Ž. Ðoković and A. Osterloh, [https://dx.doi.org/10.1063/1.3075830 On polynomial invariants of several qubits], 2009

Valerie Coffman, Joydip Kundu, and William K. Wootters, [https://dx.doi.org/10.1103/PhysRevA.61.052306 Distributed entanglement], 2000

{{cite journal |last1=Swain |first1=S. Nibedita |last2=Bhaskara |first2=Vineeth S. |last3=Panigrahi |first3=Prasanta K. |title=Generalized entanglement measure for continuous-variable systems |journal=Physical Review A |date=27 May 2022 |volume=105 |issue=5 |pages=052441 |doi=10.1103/PhysRevA.105.052441 |arxiv=1706.01448 |bibcode=2022PhRvA.105e2441S |s2cid=239885759 |url=https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.052441 |access-date=27 May 2022}}

Tobias J. Osborne and Frank Verstraete, [https://dx.doi.org/10.1103/PhysRevLett.96.220503 General Monogamy Inequality for Bipartite Qubit Entanglement], 2006

Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, Karol Horodecki, [https://dx.doi.org/10.1103/RevModPhys.81.865 Quantum entanglement], 2009

}}

{{DEFAULTSORT:Concurrence (Quantum Computing)}}

Category:Theoretical computer science

Category:Quantum information science