Connection (algebraic framework)

Geometry of quantum systems (e.g.,

noncommutative geometry and supergeometry) is mainly

phrased in algebraic terms of modules and

algebras. Connections on modules are

generalization of a linear connection on a smooth vector bundle E\to

X written as a Koszul connection on the

C^\infty(X)-module of sections of E\to

X.{{harv|Koszul|1950}}

Commutative algebra

Let A be a commutative ring

and M an A-module. There are different equivalent definitions

of a connection on M.{{harv|Koszul|1950}},{{harv|Mangiarotti

|Sardanashvily|2000}}

=First definition=

If k \to A is a ring homomorphism, a k-linear connection is a k-linear morphism

: \nabla: M \to \Omega^1_{A/k} \otimes_A M

which satisfies the identity

: \nabla(am) = da \otimes m + a \nabla m

A connection extends, for all p \geq 0 to a unique map

: \nabla: \Omega^p_{A/k} \otimes_A M \to \Omega^{p+1}_{A/k} \otimes_A M

satisfying \nabla(\omega \otimes f) = d\omega \otimes f + (-1)^p \omega \wedge \nabla f. A connection is said to be integrable if \nabla \circ \nabla = 0, or equivalently, if the curvature \nabla^2: M \to \Omega_{A/k}^2 \otimes M vanishes.

=Second definition=

Let D(A) be the module of derivations of a ring A. A

connection on an A-module M is defined

as an A-module morphism

: \nabla:D(A) \to \mathrm{Diff}_1(M,M); u \mapsto \nabla_u

such that the first order differential operators \nabla_u on

M obey the Leibniz rule

: \nabla_u(ap)=u(a)p+a\nabla_u(p), \quad a\in A, \quad p\in

M.

Connections on a module over a commutative ring always exist.

The curvature of the connection \nabla is defined as

the zero-order differential operator

: R(u,u')=[\nabla_u,\nabla_{u'}]-\nabla_{[u,u']} \,

on the module M for all u,u'\in D(A).

If E\to X is a vector bundle, there is one-to-one

correspondence between [[connection (vector bundle)|linear

connections]] \Gamma on E\to X and the

connections \nabla on the

C^\infty(X)-module of sections of E\to

X. Strictly speaking, \nabla corresponds to

the covariant differential of a

connection on E\to X.

Graded commutative algebra

The notion of a connection on modules over commutative rings is

straightforwardly extended to modules over a [[superalgebra|graded

commutative algebra]].{{harv|Bartocci|Bruzzo|Hernández-Ruipérez|1991}}, {{harv|Mangiarotti

|Sardanashvily|2000}} This is the case of

superconnections in supergeometry of

graded manifolds and supervector bundles.

Superconnections always exist.

Noncommutative algebra

If A is a noncommutative ring, connections on left

and right A-modules are defined similarly to those on

modules over commutative rings.{{harv|Landi|1997}} However

these connections need not exist.

In contrast with connections on left and right modules, there is a

problem how to define a connection on an

R-S-bimodule over noncommutative rings

R and S. There are different definitions

of such a connection.{{harv|Dubois-Violette|Michor|1996}},{{harv|Landi |1997}} Let us mention one of them. A connection on an

R-S-bimodule P is defined as a bimodule

morphism

: \nabla:D(A)\ni u\to \nabla_u\in \mathrm{Diff}_1(P,P)

which obeys the Leibniz rule

: \nabla_u(apb)=u(a)pb+a\nabla_u(p)b +apu(b), \quad a\in R,

\quad b\in S, \quad p\in P.

See also

Notes

{{reflist}}

References

{{ref begin}}

  • {{cite journal |last1=Koszul |first1=Jean-Louis |title=Homologie et cohomologie des algèbres de Lie |journal=Bulletin de la Société Mathématique de France |year=1950 |volume=78 |pages=65–127 |doi=10.24033/bsmf.1410 |url=http://www.numdam.org/item/10.24033/bsmf.1410.pdf}}
  • {{cite book |s2cid=51020097 |doi=10.1007/978-3-662-02503-1 |title=Lectures on Fibre Bundles and Differential Geometry (Tata University, Bombay, 1960) |year=1986 |last1=Koszul |first1=J. L. |doi-broken-date=1 November 2024 |isbn=978-3-540-12876-2|zbl=0244.53026 }}
  • {{cite book |doi=10.1007/978-94-011-3504-7|title=The Geometry of Supermanifolds |year=1991 |last1=Bartocci |first1=Claudio |last2=Bruzzo |first2=Ugo |last3=Hernández-Ruipérez |first3=Daniel |isbn=978-94-010-5550-5 }}
  • {{cite journal |arxiv=q-alg/9503020|doi=10.1016/0393-0440(95)00057-7 |title=Connections on central bimodules in noncommutative differential geometry |year=1996 |last1=Dubois-Violette |first1=Michel |last2=Michor |first2=Peter W. |journal=Journal of Geometry and Physics |volume=20 |issue=2–3 |pages=218–232 |s2cid=15994413 }}
  • {{cite book |doi=10.1007/3-540-14949-X|title=An Introduction to Noncommutative Spaces and their Geometries |series=Lecture Notes in Physics |year=1997 |volume=51 |isbn=978-3-540-63509-3 |s2cid=14986502|arxiv=hep-th/9701078|first1=Giovanni |last1=Landi}}
  • {{cite book |doi=10.1142/2524|title=Connections in Classical and Quantum Field Theory |year=2000 |last1=Mangiarotti |first1=L. |last2=Sardanashvily |first2=G. |isbn=978-981-02-2013-6 }}

{{ref end}}