Constructive logic
{{use dmy dates|date=April 2025}}
Constructive logic is a family of logics where proofs must be constructive (i.e., proving something means one must build or exhibit it, not just argue it “must exist” abstractly). No “non-constructive” proofs are allowed (like the classic proof by contradiction without a witness).
The main constructive logics are the following:
1. Intuitionistic logic
{{main|Intuitionistic logic}}
Founder: L. E. J. Brouwer (1908, philosophy){{sfn|Brouwer|1908}}{{sfn|Brouwer|1913}} formalized by A. Heyting (1930){{sfn|Heyting|1930}} and A. N. Kolmogorov (1932){{sfn|Kolmogorov|1932}}
Key Idea: Truth = having a proof. One cannot assert “ or not ” unless one can prove or prove .
Features:
- No law of excluded middle ( is not generally valid).
- No double negation elimination ( is not valid generally).
- Implication is constructive: a proof of is a method turning any proof of P into a proof of Q.
Used in: type theory, constructive mathematics.
2. Modal logics for constructive reasoning
{{main|Modal companion}}
Founder(s):
- K F. Gödel (1933) showed that intuitionistic logic can be embedded into modal logic S4.{{sfn|Gödel|1986|pages=300-302}}
- (other systems)
Interpretation (Gödel): means “ is provable” (or “necessarily ” in the proof sense).
Further: Modern provability logics build on this.
3. Minimal logic
{{main|Minimal logic}}
Simpler than intuitionistic logic.
Founder: I. Johansson (1937){{sfn|Johansson|1937}}
Key Idea: Like intuitionistic logic but without assuming the principle of explosion (ex falso quodlibet, “from falsehood, anything follows”).
Features:
- Doesn’t automatically infer any proposition from a contradiction.
Used for: Studying logics without commitment to contradictions blowing up the system.
4. Intuitionistic type theory (Martin-Löf type theory)
{{main|Intuitionistic type theory}}
Founder: P. E. R. Martin-Löf (1970s)
Key Idea: Types = propositions, terms = proofs (this is the Curry–Howard correspondence).
Features:
- Every proof is a program (and vice versa).
- Very strict — everything must be directly constructible.
5. Linear logic
{{main|Linear logic}}
Not strictly intuitionistic, but very constructive.
Founder: J. Girard (1987){{sfn|Girard|1987}}
Key Idea: Resource sensitivity — one can only use an assumption once unless one specifically says it can be reused.
Features:
- Tracks “how many times” one can use a proof.
- Splits conjunction/disjunction into multiple types (e.g., additive vs. multiplicative).
Used in: Computer science, concurrency, quantum logic.
6. Other Constructive Systems
- Constructive set theory (e.g., CZF — Constructive Zermelo–Fraenkel set theory): Builds sets constructively.
- Realizability Theory: Ties constructive logic to computability — proofs correspond to algorithms.
- Topos Logic: Internal logics of topoi (generalized spaces) are intuitionistic.
See also
Notes
{{Reflist|2}}
References
- {{cite book
| editor1-last = Berka
| editor1-first = Karel
| editor2-last = Kreiser
| editor2-first = Lothar
| title = Logik-Texte
| publisher = De Gruyter
| date=1986
| doi=10.1515/9783112645826
| isbn = 978-3-11-264582-6
}}
- {{cite book
| last = Brouwer
| first = Luitzen Egbertus Jan
| author-link = L. E. J. Brouwer
| title = Over de Grondslagen der Wiskunde
| publisher = N.V. Uitgeversmaatschappij Sijthoff
| year = 1908
| language = Dutch
}}
- {{cite journal
| last = Brouwer
| first = Luitzen Egbertus Jan
| author-link = L. E. J. Brouwer
| title = Intuitionism and Formalism
| url = https://www.ams.org/journals/bull/2000-37-01/S0273-0979-99-00802-2/S0273-0979-99-00802-2.pdf
| journal = Bulletin of the American Mathematical Society
| volume = 19
| number = 6
| pages = 191–194
| year = 1913
}}
- {{cite journal
| last = Girard
| first = Jean-Yves
| author-link = Jean-Yves Girard
| title = Linear logic
| journal = Theoretical Computer Science
| volume = 50
| issue = 1
| pages = 1–101
| year = 1987
| doi = 10.1016/0304-3975(87)90045-4
| publisher = Elsevier
}}
- {{cite book
| last = Gödel
| first = Kurt
| author-link = Kurt Gödel
| series = Collected Works
| volume = I
| year = 1986
| orig-year = 1933
| chapter = Eine Interpretation des intuitionistischen Aussagenkalkiils
| title = Publications 1929–1936
| url = https://antilogicalism.com/wp-content/uploads/2021/12/Godel-1.pdf
| editor1-last = Feferman
| editor1-first = Solomon
| editor1-link = Solomon Feferman
| editor2-last = Dawson, Jr.
| editor2-first = John W.
| editor2-link = John W. Dawson Jr.
| editor3-last = Kleene
| editor3-first = Stephen C.
| editor3-link = Stephen Cole Kleene
| editor4-last = Moore
| editor4-first = Gregory H.
| editor5-last = Solovay
| editor5-first = Robert M.
| editor5-link = Robert M. Solovay
| editor6-last = Van Heijenoort
| editor6-first = Jean
| editor6-link = Jean van Heijenoort
| location = New York
| publisher = Oxford University Press
| isbn = 978-0-19-503964-1
}} / Paperback: {{isbn|978-0-19-514720-9}}
- {{cite journal
| last = Heyting
| first = Arend
| author-link = Arend Heyting
| year = 1930
| title = Die formalen Regeln der intuitionistischen Logik
| language = de
| journal = Sitzungsberichte der preußischen Akademie der Wissenschaften, phys.-math. Klasse
| pages = 42–56, 57–71, 158–169
| oclc = 601568391
}}
(abridged reprint in {{harvnb|Berka|Kreiser|1986|pages=188-192}})
- {{cite journal
| last = Johansson
| first = Ingebrigt
| author-link = Ingebrigt Johansson
| year = 1937
| title = Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus
| url = http://www.numdam.org/item/CM_1937__4__119_0
| journal = Compositio Mathematica
| volume = 4
| pages = 119–136
| language = de
}}
- {{cite journal
| last = Kolmogorov
| first = Andrey
| author-link = Andrey Kolmogorov
| title = On the Principle of Excluded Middle
| journal = Mathematical Logic Quarterly
| volume = 10
| pages = 65–74
| year = 1932
}}
{{Non-classical logic}}
{{Authority control}}
Category:Logic in computer science
Category:Constructivism (mathematics)