Constructive logic

{{use dmy dates|date=April 2025}}

Constructive logic is a family of logics where proofs must be constructive (i.e., proving something means one must build or exhibit it, not just argue it “must exist” abstractly). No “non-constructive” proofs are allowed (like the classic proof by contradiction without a witness).

The main constructive logics are the following:

1. Intuitionistic logic

{{main|Intuitionistic logic}}

Founder: L. E. J. Brouwer (1908, philosophy){{sfn|Brouwer|1908}}{{sfn|Brouwer|1913}} formalized by A. Heyting (1930){{sfn|Heyting|1930}} and A. N. Kolmogorov (1932){{sfn|Kolmogorov|1932}}

Key Idea: Truth = having a proof. One cannot assert “P or not P” unless one can prove P or prove \neg \neg P.

Features:

Used in: type theory, constructive mathematics.

2. Modal logics for constructive reasoning

{{main|Modal companion}}

Founder(s):

  • K F. Gödel (1933) showed that intuitionistic logic can be embedded into modal logic S4.{{sfn|Gödel|1986|pages=300-302}}
  • (other systems)

Interpretation (Gödel): \Box P means “P is provable” (or “necessarily P” in the proof sense).

Further: Modern provability logics build on this.

3. Minimal logic

{{main|Minimal logic}}

Simpler than intuitionistic logic.

Founder: I. Johansson (1937){{sfn|Johansson|1937}}

Key Idea: Like intuitionistic logic but without assuming the principle of explosion (ex falso quodlibet, “from falsehood, anything follows”).

Features:

  • Doesn’t automatically infer any proposition from a contradiction.

Used for: Studying logics without commitment to contradictions blowing up the system.

4. Intuitionistic type theory (Martin-Löf type theory)

{{main|Intuitionistic type theory}}

Founder: P. E. R. Martin-Löf (1970s)

Key Idea: Types = propositions, terms = proofs (this is the Curry–Howard correspondence).

Features:

  • Every proof is a program (and vice versa).
  • Very strict — everything must be directly constructible.

Used in: Proof assistants like Coq, Agda.

5. Linear logic

{{main|Linear logic}}

Not strictly intuitionistic, but very constructive.

Founder: J. Girard (1987){{sfn|Girard|1987}}

Key Idea: Resource sensitivity — one can only use an assumption once unless one specifically says it can be reused.

Features:

  • Tracks “how many times” one can use a proof.
  • Splits conjunction/disjunction into multiple types (e.g., additive vs. multiplicative).

Used in: Computer science, concurrency, quantum logic.

6. Other Constructive Systems

  • Realizability Theory: Ties constructive logic to computability — proofs correspond to algorithms.
  • Topos Logic: Internal logics of topoi (generalized spaces) are intuitionistic.

See also

Notes

{{Reflist|2}}

References

  • {{cite book

| editor1-last = Berka

| editor1-first = Karel

| editor2-last = Kreiser

| editor2-first = Lothar

| title = Logik-Texte

| publisher = De Gruyter

| date=1986

| doi=10.1515/9783112645826

| isbn = 978-3-11-264582-6

}}

  • {{cite book

| last = Brouwer

| first = Luitzen Egbertus Jan

| author-link = L. E. J. Brouwer

| title = Over de Grondslagen der Wiskunde

| publisher = N.V. Uitgeversmaatschappij Sijthoff

| year = 1908

| language = Dutch

}}

  • {{cite journal

| last = Brouwer

| first = Luitzen Egbertus Jan

| author-link = L. E. J. Brouwer

| title = Intuitionism and Formalism

| url = https://www.ams.org/journals/bull/2000-37-01/S0273-0979-99-00802-2/S0273-0979-99-00802-2.pdf

| journal = Bulletin of the American Mathematical Society

| volume = 19

| number = 6

| pages = 191–194

| year = 1913

}}

  • {{cite journal

| last = Girard

| first = Jean-Yves

| author-link = Jean-Yves Girard

| title = Linear logic

| journal = Theoretical Computer Science

| volume = 50

| issue = 1

| pages = 1–101

| year = 1987

| doi = 10.1016/0304-3975(87)90045-4

| publisher = Elsevier

}}

  • {{cite book

| last = Gödel

| first = Kurt

| author-link = Kurt Gödel

| series = Collected Works

| volume = I

| year = 1986

| orig-year = 1933

| chapter = Eine Interpretation des intuitionistischen Aussagenkalkiils

| title = Publications 1929–1936

| url = https://antilogicalism.com/wp-content/uploads/2021/12/Godel-1.pdf

| editor1-last = Feferman

| editor1-first = Solomon

| editor1-link = Solomon Feferman

| editor2-last = Dawson, Jr.

| editor2-first = John W.

| editor2-link = John W. Dawson Jr.

| editor3-last = Kleene

| editor3-first = Stephen C.

| editor3-link = Stephen Cole Kleene

| editor4-last = Moore

| editor4-first = Gregory H.

| editor5-last = Solovay

| editor5-first = Robert M.

| editor5-link = Robert M. Solovay

| editor6-last = Van Heijenoort

| editor6-first = Jean

| editor6-link = Jean van Heijenoort

| location = New York

| publisher = Oxford University Press

| isbn = 978-0-19-503964-1

}} / Paperback: {{isbn|978-0-19-514720-9}}

  • {{cite journal

| last = Heyting

| first = Arend

| author-link = Arend Heyting

| year = 1930

| title = Die formalen Regeln der intuitionistischen Logik

| language = de

| journal = Sitzungsberichte der preußischen Akademie der Wissenschaften, phys.-math. Klasse

| pages = 42–56, 57–71, 158–169

| oclc = 601568391

}}
(abridged reprint in {{harvnb|Berka|Kreiser|1986|pages=188-192}})

  • {{cite journal

| last = Johansson

| first = Ingebrigt

| author-link = Ingebrigt Johansson

| year = 1937

| title = Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus

| url = http://www.numdam.org/item/CM_1937__4__119_0

| journal = Compositio Mathematica

| volume = 4

| pages = 119–136

| language = de

}}

  • {{cite journal

| last = Kolmogorov

| first = Andrey

| author-link = Andrey Kolmogorov

| title = On the Principle of Excluded Middle

| journal = Mathematical Logic Quarterly

| volume = 10

| pages = 65–74

| year = 1932

}}

{{Non-classical logic}}

{{Authority control}}

Category:Logic in computer science

Category:Non-classical logic

Category:Constructivism (mathematics)

Category:Systems of formal logic

Category:Intuitionism