Continuant (mathematics)

In algebra, the continuant is a multivariate polynomial representing the determinant of a tridiagonal matrix and having applications in continued fractions.

Definition

The n-th continuant K_n(x_1,\;x_2,\;\ldots,\;x_n) is defined recursively by

: K_0 = 1 ; \,

: K_1(x_1) = x_1 ; \,

: K_n(x_1,\;x_2,\;\ldots,\;x_n) = x_n K_{n-1}(x_1,\;x_2,\;\ldots,\;x_{n-1}) + K_{n-2}(x_1,\;x_2,\;\ldots,\;x_{n-2}) . \,

Properties

  • The continuant K_n(x_1,\;x_2,\;\ldots,\;x_n) can be computed by taking the sum of all possible products of x1,...,xn, in which any number of disjoint pairs of consecutive terms are deleted (Euler's rule). For example,
  • : K_5(x_1,\;x_2,\;x_3,\;x_4,\;x_5) = x_1 x_2 x_3 x_4 x_5\; +\; x_3 x_4 x_5\; +\; x_1 x_4 x_5\; +\; x_1 x_2 x_5\; +\; x_1 x_2 x_3\; +\; x_1\; +\; x_3\; +\; x_5.

:It follows that continuants are invariant with respect to reversing the order of indeterminates: K_n(x_1,\;\ldots,\;x_n) = K_n(x_n,\;\ldots,\;x_1).

\det \begin{pmatrix}

x_1 & 1 & 0 &\cdots & 0 \\

-1 & x_2 & 1 & \ddots & \vdots\\

0 & -1 & \ddots &\ddots & 0 \\

\vdots & \ddots & \ddots &\ddots & 1 \\

0 & \cdots & 0 & -1 &x_n

\end{pmatrix}.

  • K_n(1,\;\ldots,\;1) = F_{n+1}, the (n+1)-st Fibonacci number.
  • \frac{K_n(x_1,\;\ldots,\;x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)} = x_1 + \frac{K_{n-2}(x_3,\;\ldots,\;x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)}.
  • Ratios of continuants represent (convergents to) continued fractions as follows:
  • : \frac{K_n(x_1,\;\ldots,x_n)}{K_{n-1}(x_2,\;\ldots,\;x_n)} = [x_1;\;x_2,\;\ldots,\;x_n] = x_1 + \frac{1}{\displaystyle{x_2 + \frac{1}{x_3 + \ldots}}}.
  • The following matrix identity holds:
  • : \begin{pmatrix} K_n(x_1,\;\ldots,\;x_n) & K_{n-1}(x_1,\;\ldots,\;x_{n-1}) \\ K_{n-1}(x_2,\;\ldots,\;x_n) & K_{n-2}(x_2,\;\ldots,\;x_{n-1}) \end{pmatrix} =

\begin{pmatrix} x_1 & 1 \\ 1 & 0 \end{pmatrix}\times\ldots\times\begin{pmatrix} x_n & 1 \\ 1 & 0 \end{pmatrix}.

  • For determinants, it implies that
  • :K_n(x_1,\;\ldots,\;x_n)\cdot K_{n-2}(x_2,\;\ldots,\;x_{n-1}) - K_{n-1}(x_1,\;\ldots,\;x_{n-1})\cdot K_{n-1}(x_2,\;\ldots,\;x_{n}) = (-1)^n.
  • and also
  • :K_{n-1}(x_2,\;\ldots,\;x_n)\cdot K_{n+2}(x_1,\;\ldots,\;x_{n+2}) - K_n(x_1,\;\ldots,\;x_n)\cdot K_{n+1}(x_2,\;\ldots,\;x_{n+2}) = (-1)^{n+1} x_{n+2}.

Generalizations

A generalized definition takes the continuant with respect to three sequences a, b and c, so that K(n) is a polynomial of a1,...,an, b1,...,bn−1 and c1,...,cn−1. In this case the recurrence relation becomes

: K_0 = 1 ; \,

: K_1 = a_1 ; \,

: K_n = a_n K_{n-1} - b_{n-1}c_{n-1} K_{n-2} . \,

Since br and cr enter into K only as a product brcr there is no loss of generality in assuming that the br are all equal to 1.

The generalized continuant is precisely the determinant of the tridiagonal matrix

: \begin{pmatrix}

a_1 & b_1 & 0 & \ldots & 0 & 0 \\

c_1 & a_2 & b_2 & \ldots & 0 & 0 \\

0 & c_2 & a_3 & \ldots & 0 & 0 \\

\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\

0 & 0 & 0 & \ldots & a_{n-1} & b_{n-1} \\

0 & 0 & 0 & \ldots & c_{n-1} & a_n

\end{pmatrix} .

In Muir's book the generalized continuant is simply called continuant.

References

  • {{cite book | author=Thomas Muir | authorlink=Thomas Muir (mathematician) | title=A treatise on the theory of determinants | url=https://archive.org/details/treatiseontheory0000muir | url-access=registration | date=1960 | publisher=Dover Publications | pages=[https://archive.org/details/treatiseontheory0000muir/page/516 516]–525 }}
  • {{cite book | title=The Markoff and Lagrange Spectra | first1=Thomas W. | last1=Cusick | first2=Mary E. | last2=Flahive |author2-link= Mary Flahive | publisher=American Mathematical Society | year=1989 | isbn=0-8218-1531-8 | pages=89 | zbl=0685.10023 | series=Mathematical Surveys and Monographs | volume=30 | location=Providence, RI }}
  • {{cite book | title=Algebra, an Elementary Text-book for the Higher Classes of Secondary Schools and for Colleges: Pt. 1 | author=George Chrystal | authorlink=George Chrystal | publisher=American Mathematical Society | year=1999 | isbn=0-8218-1649-7 | pages=500 }}

Category:Continued fractions

Category:Matrices (mathematics)

Category:Polynomials