Continuous q-Hermite polynomials
{{DISPLAYTITLE: Continuous q-Hermite polynomials}}
In mathematics, the continuous q-Hermite polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions by
:
q^{-n},0\\
-\end{matrix}
;q,q^n e^{-2i\theta}\right],\quad x=\cos\,\theta.
Recurrence and difference relations
:
with the initial conditions
:
From the above, one can easily calculate:
:
\begin{align}
H_0 (x\mid q) & = 1 \\
H_1 (x\mid q) & = 2x \\
H_2 (x\mid q) & = 4x^2 - (1-q) \\
H_3 (x\mid q) & = 8x^3 - 2x(2-q-q^2) \\
H_4 (x\mid q) & = 16x^4 - 4x^2(3-q-q^2-q^3) + (1-q-q^3+q^4)
\end{align}
Generating function
:
{\left( t e^{i \theta},t e^{-i \theta};q \right)_\infty}
where .
References
- {{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
- {{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
- {{dlmf|id=18|title=Chapter 18: Orthogonal Polynomials|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
- {{cite thesis |last=Sadjang |first=Patrick Njionou |title=Moments of Classical Orthogonal Polynomials |type=Ph.D. |publisher=Universität Kassel |citeseerx=10.1.1.643.3896 }}