Continuous q-Hermite polynomials

{{DISPLAYTITLE: Continuous q-Hermite polynomials}}

In mathematics, the continuous q-Hermite polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions by

:H_n(x|q)=e^{in\theta}{}_2\phi_0\left[\begin{matrix}

q^{-n},0\\

-\end{matrix}

;q,q^n e^{-2i\theta}\right],\quad x=\cos\,\theta.

Recurrence and difference relations

: 2x H_n(x\mid q) = H_{n+1} (x\mid q) + (1-q^n) H_{n-1} (x\mid q)

with the initial conditions

: H_0 (x\mid q) =1, H_{-1} (x\mid q) = 0

From the above, one can easily calculate:

:

\begin{align}

H_0 (x\mid q) & = 1 \\

H_1 (x\mid q) & = 2x \\

H_2 (x\mid q) & = 4x^2 - (1-q) \\

H_3 (x\mid q) & = 8x^3 - 2x(2-q-q^2) \\

H_4 (x\mid q) & = 16x^4 - 4x^2(3-q-q^2-q^3) + (1-q-q^3+q^4)

\end{align}

Generating function

: \sum_{n=0}^\infty H_n(x \mid q) \frac{t^n}{(q;q)_n} = \frac{1}

{\left( t e^{i \theta},t e^{-i \theta};q \right)_\infty}

where \textstyle x=\cos \theta.

References

  • {{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
  • {{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
  • {{dlmf|id=18|title=Chapter 18: Orthogonal Polynomials|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}
  • {{cite thesis |last=Sadjang |first=Patrick Njionou |title=Moments of Classical Orthogonal Polynomials |type=Ph.D. |publisher=Universität Kassel |citeseerx=10.1.1.643.3896 }}

Category:Orthogonal polynomials

Category:Q-analogs

Category:Special hypergeometric functions