Continuous q-Laguerre polynomials

In mathematics, the continuous q-Laguerre polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. {{harvs|txt | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010|loc=14}} give a detailed list of their properties.

Definition

The polynomials are given in terms of basic hypergeometric functions and the q-Pochhammer symbol by Roelof Koekoek, Peter Lesky, Rene Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues, p514, Springer

P_{n}^{(\alpha)}(x|q)=\frac{(q^{\alpha+1};q)_{n}}{(q;q)_{n}}_{3}\phi_{2}(q^{-n},q^{\alpha/2+1/4}e^{i\theta},q^{\alpha/2+1/4}e^{-i\theta};q^{\alpha+1},0|q,q)

References

{{Reflist}}

  • {{Citation | last1=Gasper | first1=George | last2=Rahman | first2=Mizan | title=Basic hypergeometric series | publisher=Cambridge University Press | edition=2nd | series=Encyclopedia of Mathematics and its Applications | isbn=978-0-521-83357-8 | mr=2128719 | year=2004 | volume=96}}
  • {{Citation | last1=Koekoek | first1=Roelof | last2=Lesky | first2=Peter A. | last3=Swarttouw | first3=René F. | title=Hypergeometric orthogonal polynomials and their q-analogues | publisher=Springer-Verlag | location=Berlin, New York | series=Springer Monographs in Mathematics | isbn=978-3-642-05013-8 | doi=10.1007/978-3-642-05014-5 | mr=2656096 | year=2010}}
  • {{dlmf|id=18|title=Chapter 18: Orthogonal Polynomials|first=Tom H. |last=Koornwinder|first2=Roderick S. C.|last2= Wong|first3=Roelof |last3=Koekoek||first4=René F. |last4=Swarttouw}}

Category:Orthogonal polynomials

Category:Q-analogs

Category:Special hypergeometric functions