Convex uniform honeycomb

{{Short description|Spatial tiling of convex uniform polyhedra}}

File:Tetrahedral-octahedral honeycomb.png and red octahedra.]]

In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.

Twenty-eight such honeycombs are known:

They can be considered the three-dimensional analogue to the uniform tilings of the plane.

The Voronoi diagram of any lattice forms a convex uniform honeycomb in which the cells are zonohedra.

History

  • 1900: Thorold Gosset enumerated the list of semiregular convex polytopes with regular cells (Platonic solids) in his publication On the Regular and Semi-Regular Figures in Space of n Dimensions, including one regular cubic honeycomb, and two semiregular forms with tetrahedra and octahedra.
  • 1905: Alfredo Andreini enumerated 25 of these tessellations.
  • 1991: Norman Johnson's manuscript Uniform Polytopes identified the list of 28.
  • 1994: Branko Grünbaum, in his paper Uniform tilings of 3-space, also independently enumerated all 28, after discovering errors in Andreini's publication. He found the 1905 paper, which listed 25, had 1 wrong, and 4 being missing. Grünbaum states in this paper that Norman Johnson deserves priority for achieving the same enumeration in 1991. He also mentions that I. Alexeyev of Russia had contacted him regarding a putative enumeration of these forms, but that Grünbaum was unable to verify this at the time.
  • 2006: George Olshevsky, in his manuscript Uniform Panoploid Tetracombs, along with repeating the derived list of 11 convex uniform tilings, and 28 convex uniform honeycombs, expands a further derived list of 143 convex uniform tetracombs (Honeycombs of uniform 4-polytopes in 4-space).George Olshevsky, (2006, Uniform Panoploid Tetracombs, Manuscript (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs) [http://bendwavy.org/4HONEYS.pdf]{{Cite OEIS|A242941|Convex uniform tessellations in dimension n}}

Only 14 of the convex uniform polyhedra appear in these patterns:

The icosahedron, snub cube, and square antiprism appear in some alternations, but those honeycombs cannot be realised with all edges unit length.

= Names =

This set can be called the regular and semiregular honeycombs. It has been called the Archimedean honeycombs by analogy with the convex uniform (non-regular) polyhedra, commonly called Archimedean solids. Recently Conway has suggested naming the set as the Architectonic tessellations and the dual honeycombs as the Catoptric tessellations.

The individual honeycombs are listed with names given to them by Norman Johnson. (Some of the terms used below are defined in Uniform 4-polytope#Geometric derivations for 46 nonprismatic Wythoffian uniform 4-polytopes)

For cross-referencing, they are given with list indices from Andreini (1-22), Williams(1–2,9-19), Johnson (11–19, 21–25, 31–34, 41–49, 51–52, 61–65), and Grünbaum(1-28). Coxeter uses δ4 for a cubic honeycomb, hδ4 for an alternated cubic honeycomb, qδ4 for a quarter cubic honeycomb, with subscripts for other forms based on the ring patterns of the Coxeter diagram.

Compact Euclidean uniform tessellations (by their infinite Coxeter group families)

File:Coxeter-Dynkin 3-space groups.png

File:Coxeter diagram affine rank4 correspondence.png

The fundamental infinite Coxeter groups for 3-space are:

  1. The {\tilde{C}}_3, [4,3,4], cubic, {{CDD|node|4|node|3|node|4|node}} (8 unique forms plus one alternation)
  2. The {\tilde{B}}_3, [4,31,1], alternated cubic, {{CDD|nodes|split2|node|4|node}} (11 forms, 3 new)
  3. The {\tilde{A}}_3 cyclic group, [(3,3,3,3)] or [3[4]], {{CDD|branch|3ab|branch}} (5 forms, one new)

There is a correspondence between all three families. Removing one mirror from {\tilde{C}}_3 produces {\tilde{B}}_3, and removing one mirror from {\tilde{B}}_3 produces {\tilde{A}}_3. This allows multiple constructions of the same honeycombs. If cells are colored based on unique positions within each Wythoff construction, these different symmetries can be shown.

In addition there are 5 special honeycombs which don't have pure reflectional symmetry and are constructed from reflectional forms with elongation and gyration operations.

The total unique honeycombs above are 18.

The prismatic stacks from infinite Coxeter groups for 3-space are:

  1. The {\tilde{C}}_2×{\tilde{I}}_1, [4,4,2,∞] prismatic group, {{CDD|node|4|node|4|node|2|node|infin|node}} (2 new forms)
  2. The {\tilde{G}}_2×{\tilde{I}}_1, [6,3,2,∞] prismatic group, {{CDD|node|6|node|3|node|2|node|infin|node}} (7 unique forms)
  3. The {\tilde{A}}_2×{\tilde{I}}_1, [(3,3,3),2,∞] prismatic group, {{CDD|node|split1|branch|2|node|infin|node}} (No new forms)
  4. The {\tilde{I}}_1×{\tilde{I}}_1×{\tilde{I}}_1, [∞,2,∞,2,∞] prismatic group, {{CDD|node|infin|node|2|node|infin|node|2|node|infin|node}} (These all become a cubic honeycomb)

In addition there is one special elongated form of the triangular prismatic honeycomb.

The total unique prismatic honeycombs above (excluding the cubic counted previously) are 10.

Combining these counts, 18 and 10 gives us the total 28 uniform honeycombs.

= The C̃<sub>3</sub>, [4,3,4] group (cubic) =

The regular cubic honeycomb, represented by Schläfli symbol {4,3,4}, offers seven unique derived uniform honeycombs via truncation operations. (One redundant form, the runcinated cubic honeycomb, is included for completeness though identical to the cubic honeycomb.) The reflectional symmetry is the affine Coxeter group [4,3,4]. There are four index 2 subgroups that generate alternations: [1+,4,3,4], [(4,3,4,2+)], [4,3+,4], and [4,3,4]+, with the first two generated repeated forms, and the last two are nonuniform.

{{C3 honeycombs}}

{{Clear|right}}

class="wikitable" style="text-align:center;"

|+ [4,3,4], space group Pm{{overline|3}}m (221)

!rowspan=2|Reference
Indices

!rowspan=2|Honeycomb name
Coxeter diagram
and Schläfli symbol

! colspan=6|Cell counts/vertex
and positions in cubic honeycomb

!rowspan=2|Frames
(Perspective)

!rowspan=2|Vertex figure

!rowspan=2|Dual cell

(0)
{{CDD|node|3|node|4|node}}

!(1)
{{CDD|node|2|node|4|node}}

!(2)
{{CDD|node|4|node|2|node}}

!(3)
{{CDD|node|4|node|3|node}}

!Alt

!Solids
(Partial)

J11,15
A1
W1
G22
δ4

|cubic (chon)
{{CDD|node_1|4|node|3|node|4|node}}
t0{4,3,4}
{4,3,4}

|(8)
30px
(4.4.4)

| 75px

|75px

|75px
octahedron

| 80px
Cube, {{CDD|node_f1|3|node|4|node}}

J12,32
A15
W14
G7
O1

|rectified cubic (rich)
{{CDD|node|4|node_1|3|node|4|node}}
t1{4,3,4}
r{4,3,4}

|(2)
30px
(3.3.3.3)

|(4)
30px
(3.4.3.4)

|75px

|75px

|75px
cuboid

|80px
Square bipyramid
{{CDD|node_f1|2|node_f1|4|node}}

J13
A14
W15
G8
t1δ4
O15

|truncated cubic (tich)
{{CDD|node_1|4|node_1|3|node|4|node}}
t0,1{4,3,4}
t{4,3,4}

|(1)
30px
(3.3.3.3)

|(4)
30px
(3.8.8)

|75px

|75px

|75px
square pyramid

|80px
Isosceles square pyramid

J14
A17
W12
G9
t0,2δ4
O14

|cantellated cubic (srich)
{{CDD|node_1|4|node|3|node_1|4|node}}
t0,2{4,3,4}
rr{4,3,4}

|(1)
30px
(3.4.3.4)

|(2)
30px
(4.4.4)

|(2)
30px
(3.4.4.4)

|75px

|75px

|75px
oblique triangular prism

|80px
Triangular bipyramid

J17
A18
W13
G25
t0,1,2δ4
O17

|cantitruncated cubic (grich)
{{CDD|node_1|4|node_1|3|node_1|4|node}}
t0,1,2{4,3,4}
tr{4,3,4}

|(1)
30px
(4.6.6)

|(1)
30px
(4.4.4)

|(2)
30px
(4.6.8)

|75px

|75px

|75px
irregular tetrahedron

|80px
Triangular pyramidille

J18
A19
W19
G20
t0,1,3δ4
O19

|runcitruncated cubic (prich)
{{CDD|node_1|4|node_1|3|node|4|node_1}}
t0,1,3{4,3,4}

|(1)
30px
(3.4.4.4)

|(1)
30px
(4.4.4)

|(2)
30px
(4.4.8)

|(1)
30px
(3.8.8)

|75px

|75px

|75px
oblique trapezoidal pyramid

|80px
Square quarter pyramidille

valign=top BGCOLOR="#d0f0f0"

|J21,31,51
A2
W9
G1
4
O21

|alternated cubic (octet)
{{CDD|node_h1|4|node|3|node|4|node}}
h{4,3,4}

|(8)
30px
(3.3.3)

|(6)
30px
(3.3.3.3)

|76px

|75px

|75px
cuboctahedron

|80px
Dodecahedrille

valign=top BGCOLOR="#d0f0f0"

|J22,34
A21
W17
G10
h2δ4
O25

|Cantic cubic (tatoh)
{{CDD|node_h1|4|node|3|node_1|4|node}} ↔ {{CDD|nodes_10ru|split2|node_1|4|node}}

|(1)
30px(3.4.3.4)

|

|(2)
30px(3.6.6)

|(2)
30px(4.6.6)

|75px

|75px

|60px
rectangular pyramid

|80px
Half oblate octahedrille

valign=top BGCOLOR="#d0f0f0"

|J23
A16
W11
G5
h3δ4
O26

|Runcic cubic (sratoh)
{{CDD|node_h1|4|node|3|node|4|node_1}} ↔ {{CDD|nodes_10ru|split2|node|4|node_1}}

|(1)
30px
(4.4.4)

|

|(1)
30px
(3.3.3)

|(3)
30px
(3.4.4.4)

|75px

|75px

|60px
tapered triangular prism

|80px
Quarter cubille

valign=top BGCOLOR="#d0f0f0"

|J24
A20
W16
G21
h2,3δ4
O28

|Runcicantic cubic (gratoh)
{{CDD|node_h1|4|node|3|node_1|4|node_1}} ↔ {{CDD|nodes_10ru|split2|node_1|4|node_1}}

|(1)
30px
(3.8.8)

|

|(1)
30px
(3.6.6)

|(2)
30px
(4.6.8)

|75px

|75px

|60px
Irregular tetrahedron

|80px
Half pyramidille

valign=top BGCOLOR="#d0f0f0"

|Nonuniformb

|snub rectified cubic (serch)
{{CDD|node_h|4|node_h|3|node_h|4|node}}
sr{4,3,4}

|(1)
30px
(3.3.3.3.3)
{{CDD|node_h|3|node_h|4|node}}

|(1)
30px
(3.3.3)
{{CDD|node_h|2|node_h|4|node}}

|(2)
30px
(3.3.3.3.4)
{{CDD|node_h|4|node_h|3|node_h}}

|(4)
30px
(3.3.3)

|75px

|

75px
Irr. tridiminished icosahedron
valign=top BGCOLOR="#d0f0f0"

|Nonuniform

|Cantic snub cubic (casch)
{{CDD|node_1|4|node_h|3|node_h|4|node}}
2s0{4,3,4}

|(1)
30px
(3.3.3.3.3)
{{CDD|node_h|3|node_h|4|node}}

|

|

|(2)
30px
(3.4.4.4)
{{CDD|node_h|3|node_h|4|node_1}}

|(3)
30px
(3.4.4)

|

|

|

valign=top BGCOLOR="#d0f0f0"

|Nonuniform

|Runcicantic snub cubic (rusch)
{{CDD|node_h|4|node_1|3|node|4|node_h}}

|(1)
30px
(3.4.3.4)

|(2)
30px
(4.4.4)

|(1)
30px
(3.3.3)

|(1)
30px
(3.6.6)

|(3)
30px
Tricup

|

|

|

valign=top BGCOLOR="#d0f0f0"

|Nonuniform

|Runcic cantitruncated cubic (esch)
{{CDD|node_h|4|node_h|3|node_h|4|node_1}}
sr3{4,3,4}

|(1)
30px
(3.3.3.3.4)
{{CDD|node_h|4|node_h|3|node_h}}

|(1)
30px
(4.4.4)
{{CDD|node_h|4|node_h|2|node_1}}

|(1)
30px
(4.4.4)
{{CDD|node_h|2|node_h|4|node_1}}

|(1)
30px
(3.4.4.4)
{{CDD|node_h|3|node_h|4|node_1}}

|(3)
30px
(3.4.4)

|

|

|

class="wikitable"

|+ {{brackets|4,3,4}} honeycombs, space group Im{{overline|3}}m (229)

rowspan=2|Reference
Indices

!rowspan=2|Honeycomb name
Coxeter diagram
{{CDD|branch_c1|4a4b|nodeab_c2}}
and Schläfli symbol

!colspan=3|Cell counts/vertex
and positions in cubic honeycomb

!rowspan=2|Solids
(Partial)

!rowspan=2|Frames
(Perspective)

!rowspan=2|Vertex figure

!rowspan=2|Dual cell

(0,3)
{{CDD|node|3|node|4|node}}
{{CDD|node|4|node|3|node}}

!(1,2)
{{CDD|node|2|node|4|node}}
{{CDD|node|4|node|2|node}}

!Alt

BGCOLOR="#e0f0e0"

|J11,15
A1
W1
G22
δ4
O1

|runcinated cubic
(same as regular cubic) (chon)
{{CDD|branch|4a4b|nodes_11}}
t0,3{4,3,4}

|(2)
30px
(4.4.4)

|(6)
30px
(4.4.4)

| 75px

|75px

|75px
octahedron

| 80px
Cube

valign=top BGCOLOR="#e0f0e0"

|J16
A3
W2
G28
t1,2δ4
O16

|bitruncated cubic (batch)
{{CDD|branch_11|4a4b|nodes}}
t1,2{4,3,4}
2t{4,3,4}

|(4)
30px
(4.6.6)

|75px

|75px

|75px
(disphenoid)

|80px
Oblate tetrahedrille

valign=top BGCOLOR="#e0f0e0"

|J19
A22
W18
G27
t0,1,2,3δ4
O20

|omnitruncated cubic (gippich)
{{CDD|branch_11|4a4b|nodes_11}}
t0,1,2,3{4,3,4}

|(2)
30px
(4.6.8)

|(2)
30px
(4.4.8)

|75px

|75px

|75px
irregular tetrahedron

|80px
Eighth pyramidille

valign=top BGCOLOR="#d0f0f0"

|J21,31,51
A2
W9
G1
4
O27

|Quarter cubic honeycomb (cytatoh)
{{CDD|branch|4a4b|nodes_h1h1}}
ht0ht3{4,3,4}

|(2)
30px
(3.3.3)

|(6)
30px
(3.6.6)

|

|76px

|75px

|75px
elongated triangular antiprism

|80px
Oblate cubille

valign=top BGCOLOR="#d0f0f0"

|J21,31,51
A2
W9
G1
4
O21

|Alternated runcinated cubic (octet)
(same as alternated cubic)
{{CDD|branch|4a4b|nodes_hh}}
ht0,3{4,3,4}

|(2)
30px
(3.3.3)

|(6)
30px
(3.3.3)

|(6)
30px
(3.3.3.3)

|76px

|75px

|75px
cuboctahedron

valign=top BGCOLOR="#d0f0f0"

|Nonuniform

|Biorthosnub cubic honeycomb (gabreth)
{{CDD|branch_11|4a4b|nodes_hh}}
2s0,3{(4,2,4,3)}

|(2)
30px
(4.6.6)

|(2)
30px
(4.4.4)

|(2)
30px
(4.4.6)

|

|

|

valign=top BGCOLOR="#d0f0f0"

|Nonuniforma

|Alternated bitruncated cubic (bisch)
{{CDD|branch_hh|4a4b|nodes}}
h2t{4,3,4}

|30px (4)
(3.3.3.3.3)

|30px (4)
(3.3.3)

|75px

|

75px

|80px

valign=top BGCOLOR="#d0f0f0"

|Nonuniform

|Cantic bisnub cubic (cabisch)
{{CDD|branch_hh|4a4b|nodes_11}}
2s0,3{4,3,4}

|(2)
30px
(3.4.4.4)

|(2)
30px
(4.4.4)

|(2)
30px
(4.4.4)

|

|

|

valign=top BGCOLOR="#d0f0f0"

|Nonuniformc

|Alternated omnitruncated cubic (snich)
{{CDD|branch_hh|4a4b|nodes_hh}}
ht0,1,2,3{4,3,4}

|(2)
30px
(3.3.3.3.4)

|(2)
30px
(3.3.3.4)

|(4)
30px
(3.3.3)

|

75px

= B̃<sub>3</sub>, [4,3<sup>1,1</sup>] group =

The {\tilde{B}}_3, [4,3] group offers 11 derived forms via truncation operations, four being unique uniform honeycombs. There are 3 index 2 subgroups that generate alternations: [1+,4,31,1], [4,(31,1)+], and [4,31,1]+. The first generates repeated honeycomb, and the last two are nonuniform but included for completeness.

The honeycombs from this group are called alternated cubic because the first form can be seen as a cubic honeycomb with alternate vertices removed, reducing cubic cells to tetrahedra and creating octahedron cells in the gaps.

Nodes are indexed left to right as 0,1,0',3 with 0' being below and interchangeable with 0. The alternate cubic names given are based on this ordering.

{{B3 honeycombs}}

class="wikitable"

|+ [4,31,1] uniform honeycombs, space group Fm{{overline|3}}m (225)

rowspan=2|Referenced
indices

!rowspan=2|Honeycomb name
Coxeter diagrams

!colspan=4|Cells by location
(and count around each vertex)

!rowspan=2|Solids
(Partial)

!rowspan=2|Frames
(Perspective)

!rowspan=2|vertex figure

(0)
{{CDD|nodea|3a|nodea|4a|nodea}}

!(1)
{{CDD|nodea|2|nodeb|2|nodea}}

!(0')
{{CDD|nodea|3a|nodea|4a|nodea}}

!(3)
{{CDD|nodea|3a|branch}}

J21,31,51
A2
W9
G1
4
O21

|Alternated cubic (octet)
{{CDD|nodes_10ru|split2|node|4|node}} ↔ {{CDD|node_h1|4|node|3|node|4|node}}

|30px (6)
(3.3.3.3)

|30px(8)
(3.3.3)

|76px

|75px

|60px
cuboctahedron

J22,34
A21
W17
G10
h2δ4
O25

|Cantic cubic (tatoh)
{{CDD|nodes_10ru|split2|node_1|4|node}} ↔ {{CDD|node_h1|4|node|3|node_1|3|node}}

|30px (1)
(3.4.3.4)

|30px (2)
(4.6.6)

|30px (2)
(3.6.6)

75px

|75px

|60px
rectangular pyramid

J23
A16
W11
G5
h3δ4
O26

|Runcic cubic (sratoh)
{{CDD|nodes_10ru|split2|node|4|node_1}} ↔ {{CDD|node_h1|4|node|3|node|4|node_1}}

|30px (1)
cube

|30px (3)
(3.4.4.4)

|30px (1)
(3.3.3)

|75px

|75px

|60px
tapered triangular prism

J24
A20
W16
G21
h2,3δ4
O28

|Runcicantic cubic (gratoh)
{{CDD|nodes_10ru|split2|node_1|4|node_1}} ↔ {{CDD|node_h1|4|node|3|node_1|3|node_1}}

|30px (1)
(3.8.8)

|30px(2)
(4.6.8)

|30px (1)
(3.6.6)

|75px

|75px

|60px
Irregular tetrahedron

class="wikitable"

|+ <[4,31,1]> uniform honeycombs, space group Pm{{overline|3}}m (221)

rowspan=2|Referenced
indices

!rowspan=2|Honeycomb name
Coxeter diagrams
{{CDD|nodeab_c1|split2|node_c2|4|node_c3}} ↔ {{CDD|node_h0|4|node_c1|3|node_c2|4|node_c3}}

!colspan=4|Cells by location
(and count around each vertex)

!rowspan=2|Solids
(Partial)

!rowspan=2|Frames
(Perspective)

!rowspan=2|vertex figure

(0,0')
{{CDD|nodea|3a|nodea|4a|nodea}}

!(1)
{{CDD|nodea|2|nodeb|2|nodea}}

!(3)
{{CDD|nodea|3a|branch}}

!Alt

BGCOLOR="#e0f0e0"

|J11,15
A1
W1
G22
δ4
O1

|Cubic (chon)
{{CDD|nodes|split2|node|4|node_1}} ↔ {{CDD|node_h0|4|node|3|node|3|node_1}}

|30px (8)
(4.4.4)

|75px

|75px

|60px
octahedron

BGCOLOR="#e0f0e0"

|rowspan=2|J12,32
A15
W14
G7
t1δ4
O15

|Rectified cubic (rich)
{{CDD|nodes|split2|node_1|4|node}} ↔ {{CDD|node_h0|4|node|3|node_1|4|node}}

|30px (4)
(3.4.3.4)

|30px (2)
(3.3.3.3)

|75px

|rowspan=2|75px

|60px
cuboid

BGCOLOR="#e0f0e0"

|Rectified cubic (rich)
{{CDD|nodes_11|split2|node|4|node}} ↔ {{CDD|node_h0|4|node_1|3|node|4|node}}

|30px (2)
(3.3.3.3)

|30px (4)
(3.4.3.4)

|75px

|60px
cuboid

BGCOLOR="#e0f0e0"

|J13
A14
W15
G8
t0,1δ4
O14

|Truncated cubic (tich)
{{CDD|nodes|split2|node_1|4|node_1}} ↔ {{CDD|node_h0|4|node|3|node_1|4|node_1}}

|30px (4)
(3.8.8)

|30px (1)
(3.3.3.3)

|75px

|75px

|60px
square pyramid

BGCOLOR="#e0f0e0"

|J14
A17
W12
G9
t0,2δ4
O17

|Cantellated cubic (srich)
{{CDD|nodes_11|split2|node|4|node_1}} ↔ {{CDD|node_h0|4|node_1|3|node|4|node_1}}

|30px (2)
(3.4.4.4)

|30px (2)
(4.4.4)

|30px (1)
(3.4.3.4)

|75px

|75px

|60px
obilique triangular prism

BGCOLOR="#e0f0e0"

|J16
A3
W2
G28
t0,2δ4
O16

|Bitruncated cubic (batch)
{{CDD|nodes_11|split2|node_1|4|node}} ↔ {{CDD|node_h0|4|node_1|3|node_1|4|node}}

|30px (2)
(4.6.6)

|30px (2)
(4.6.6)

|75px

|75px

|60px
isosceles tetrahedron

BGCOLOR="#e0f0e0"

|J17
A18
W13
G25
t0,1,2δ4
O18

|Cantitruncated cubic (grich)
{{CDD|nodes_11|split2|node_1|4|node_1}} ↔ {{CDD|node_h0|4|node_1|3|node_1|4|node_1}}

|30px (2)
(4.6.8)

|30px (1)
(4.4.4)

|30px(1)
(4.6.6)

|75px

|75px

|60px
irregular tetrahedron

BGCOLOR="#d0f0f0"

|J21,31,51
A2
W9
G1
4
O21

|Alternated cubic (octet)
{{CDD|node_h1|4|node|split1|nodes}} ↔ {{CDD|node_1|split1|nodes|split2|node}}

|30px (8)
(3.3.3)

|30px (6)
(3.3.3.3)

|75px

|75px

|60px
cuboctahedron

BGCOLOR="#d0f0f0"

|J22,34
A21
W17
G10
h2δ4
O25

|Cantic cubic (tatoh)
{{CDD|node_h1|4|node|split1|nodes_11}} ↔ {{CDD|node_1|split1|nodes_11|split2|node}}

|30px (2)
(3.6.6)

|30px (1)
(3.4.3.4)

|30px (2)
(4.6.6)

75px

|75px

|60px
rectangular pyramid

BGCOLOR="#d0f0f0"

|Nonuniforma

|Alternated bitruncated cubic (bisch)
{{CDD|nodes_hh|split2|node_h|4|node}} ↔ {{CDD|node_h0|4|node_h|3|node_h|4|node}}

|30px (2)
(3.3.3.3.3)

|30px (2)
(3.3.3.3.3)

|30px (4)
(3.3.3)

|

|

|60px

BGCOLOR="#d0f0f0"

|Nonuniformb

|Alternated cantitruncated cubic (serch)
{{CDD|nodes_hh|split2|node_h|4|node_h}} ↔ {{CDD|node_h0|4|node_h|3|node_h|4|node_h}}

|30px (2)
(3.3.3.3.4)

|30px (1)
(3.3.3)

|30px (1)
(3.3.3.3.3)

|30px (4)
(3.3.3)

|75px

|

|60px
Irr. tridiminished icosahedron

= Ã<sub>3</sub>, [3<sup>[4]</sup>] group =

There are 5 forms[http://mathworld.wolfram.com/Necklace.html], [http://oeis.org/A000029 A000029] 6-1 cases, skipping one with zero marks constructed from the {\tilde{A}}_3, [3[4]] Coxeter group, of which only the quarter cubic honeycomb is unique. There is one index 2 subgroup [3[4]]+ which generates the snub form, which is not uniform, but included for completeness.

{{A3 honeycombs}}

class="wikitable"

|+ {{Brackets|3{{Bracket|4}}}} uniform honeycombs, space group Fd{{overline|3}}m (227)

rowspan=2|Referenced
indices

!rowspan=2|Honeycomb name
Coxeter diagrams
{{CDD|branch_c1-2|3ab|branch_c1-2}}

!colspan=2|Cells by location
(and count around each vertex)

!rowspan=2|Solids
(Partial)

!rowspan=2|Frames
(Perspective)

!rowspan=2|vertex figure

(0,1)
{{CDD|nodeb|3b|branch}}

!(2,3)
{{CDD|branch|3a|nodea}}

J25,33
A13
W10
G6
4
O27

|quarter cubic (cytatoh)
{{CDD|branch_10r|3ab|branch_10l}} ↔ {{CDD|node_h1|4|node|3|node|4|node_h1}}
q{4,3,4}

|30px (2)
(3.3.3)

|30px (6)
(3.6.6)

|75px

|75px

|75px
triangular antiprism

class="wikitable"

|+ <[3[4]]> ↔ [4,31,1] uniform honeycombs, space group Fm{{overline|3}}m (225)

rowspan=2|Referenced
indices

!rowspan=2|Honeycomb name
Coxeter diagrams
{{CDD|node_c3|split1|nodeab_c1-2|split2|node_c3}} ↔ {{CDD|node|3|node_c3|split1|nodeab_c1-2}}

!colspan=3|Cells by location
(and count around each vertex)

!rowspan=2|Solids
(Partial)

!rowspan=2|Frames
(Perspective)

!rowspan=2|vertex figure

0

!(1,3)

!2

BGCOLOR="#e0f0e0"

|J21,31,51
A2
W9
G1
4
O21

|alternated cubic (octet)
{{CDD|node_1|split1|nodes|split2|node}} ↔ {{CDD|nodes_10ru|split2|node|4|node}} ↔ {{CDD|node_h1|4|node|3|node|4|node}}
h{4,3,4}

|

|30px (8)
(3.3.3)

|30px (6)
(3.3.3.3)

|75px

|75px

|75px
cuboctahedron

BGCOLOR="#e0f0e0"

|J22,34
A21
W17
G10
h2δ4
O25

|cantic cubic (tatoh)
{{CDD|node_1|split1|nodes_11|split2|node}} ↔ {{CDD|nodes_10ru|split2|node_1|4|node}} ↔ {{CDD|node_h1|4|node|3|node_1|4|node}}
h2{4,3,4}

|30px (2)
(3.6.6)

|30px (1)
(3.4.3.4)

|30px (2)
(4.6.6)

|75px

|75px

|75px
Rectangular pyramid

class="wikitable"

|+ [2[3[4]]] ↔ [4,3,4] uniform honeycombs, space group Pm{{overline|3}}m (221)

rowspan=2|Referenced
indices

!rowspan=2|Honeycomb name
Coxeter diagrams
{{CDD|node_c1|split1|nodeab_c2|split2|node_c1}} ↔ {{CDD|node|4|node_c1|3|node_c2|4|node}}

!colspan=2|Cells by location
(and count around each vertex)

!rowspan=2|Solids
(Partial)

!rowspan=2|Frames
(Perspective)

!rowspan=2|vertex figure

(0,2)
{{CDD|nodeb|3b|branch}}

!(1,3)
{{CDD|branch|3b|nodeb}}

BGCOLOR="#a0f0a0"

|J12,32
A15
W14
G7
t1δ4
O1

|rectified cubic (rich)
{{CDD|node_1|split1|nodes|split2|node_1}} ↔ {{CDD|nodes|split2|node_1|4|node}} ↔ {{CDD|nodes_11|split2|node|4|node}} ↔ {{CDD|node|4|node|3|node_1|4|node}}
r{4,3,4}

|30px (2)
(3.4.3.4)

|30px (1)
(3.3.3.3)

|75px

|75px

|75px
cuboid

class="wikitable"

|+ [4[3[4]]] ↔ {{brackets|4,3,4}} uniform honeycombs, space group Im{{overline|3}}m (229)

rowspan=2|Referenced
indices

!rowspan=2|Honeycomb name
Coxeter diagrams
{{CDD|node_c1|split1|nodeab_c1|split2|node_c1}} ↔ {{CDD|nodeab_c1|split2|node_c1|4|node_h0}} ↔ {{CDD|node_h0|4|node_c1|3|node_c1|4|node_h0}}

!colspan=2|Cells by location
(and count around each vertex)

!rowspan=2|Solids
(Partial)

!rowspan=2|Frames
(Perspective)

!rowspan=2|vertex figure

(0,1,2,3)
{{CDD|node|3|node|3|node}}

!Alt

BGCOLOR="#60f060"

|J16
A3
W2
G28
t1,2δ4
O16

|bitruncated cubic (batch)
{{CDD|node_1|split1|nodes_11|split2|node_1}} ↔ {{CDD|nodes_11|split2|node_1|4|node_h0}} ↔ {{CDD|node_h0|4|node_1|3|node_1|4|node_h0}}
2t{4,3,4}

|30px (4)
(4.6.6)

|

|75px

|75px

|75px
isosceles tetrahedron

BGCOLOR="#d0f0f0"

|Nonuniforma

|Alternated cantitruncated cubic (bisch)
{{CDD|node_h|split1|nodes_hh|split2|node_h}} ↔ {{CDD|nodes_hh|split2|node_h|4|node_h0}} ↔ {{CDD|node_h0|4|node_h|3|node_h|4|node_h0}}
h2t{4,3,4}

|30px (4)
(3.3.3.3.3)

|30px (4)
(3.3.3)

|

|75px

= Nonwythoffian forms (gyrated and elongated) =

Three more uniform honeycombs are generated by breaking one or another of the above honeycombs where its faces form a continuous plane, then rotating alternate layers by 60 or 90 degrees (gyration) and/or inserting a layer of prisms (elongation).

The elongated and gyroelongated alternated cubic tilings have the same vertex figure, but are not alike. In the elongated form, each prism meets a tetrahedron at one triangular end and an octahedron at the other. In the gyroelongated form, prisms that meet tetrahedra at both ends alternate with prisms that meet octahedra at both ends.

The gyroelongated triangular prismatic tiling has the same vertex figure as one of the plain prismatic tilings; the two may be derived from the gyrated and plain triangular prismatic tilings, respectively, by inserting layers of cubes.

class="wikitable"

!Referenced
indices

!symbol

!Honeycomb name

!cell types (# at each vertex)

!Solids
(Partial)

!Frames
(Perspective)

!vertex figure

J52
A2'
G2
O22

|h{4,3,4}:g

|align=center|gyrated alternated cubic (gytoh)

|align=center|tetrahedron (8)
octahedron (6)

|70px

|100px

|80px
triangular orthobicupola

J61
A?
G3
O24

|h{4,3,4}:ge

|align=center|gyroelongated alternated cubic (gyetoh)

|align=center|triangular prism (6)
tetrahedron (4)
octahedron (3)

|70px

|100px

|rowspan=2|80px

J62
A?
G4
O23

|h{4,3,4}:e

|align=center|elongated alternated cubic (etoh)

|align=center|triangular prism (6)
tetrahedron (4)
octahedron (3)

|70px

|80px

J63
A?
G12
O12

|{3,6}:g × {∞}

|align=center|gyrated triangular prismatic (gytoph)

|align=center|triangular prism (12)

|70px

|100px

|80px

J64
A?
G15
O13

|{3,6}:ge × {∞}

|align=center|gyroelongated triangular prismatic (gyetaph)

|align=center|triangular prism (6)
cube (4)

|70px

|100px

|80px

= Prismatic stacks =

Eleven prismatic tilings are obtained by stacking the eleven uniform plane tilings, shown below, in parallel layers. (One of these honeycombs is the cubic, shown above.) The vertex figure of each is an irregular bipyramid whose faces are isosceles triangles.

== The C̃<sub>2</sub>×Ĩ<sub>1</sub>(&infin;), [4,4,2,&infin;], prismatic group ==

There are only 3 unique honeycombs from the square tiling, but all 6 tiling truncations are listed below for completeness, and tiling images are shown by colors corresponding to each form.

class="wikitable"

!Indices

!Coxeter-Dynkin
and Schläfli
symbols

!Honeycomb name

!Plane
tiling

!Solids
(Partial)

!Tiling

rowspan=3|J11,15
A1
G22

|align=center|{{CDD|node_1|4|node|4|node|2|node_1|infin|node}}
{4,4}×{∞}

|rowspan=3 align=center|Cubic
(Square prismatic) (chon)

|rowspan=3|(4.4.4.4)

|rowspan=3|80px

|50px

BGCOLOR="#e0f0e0"

|align=center|{{CDD|node|4|node_1|4|node|2|node_1|infin|node}}
r{4,4}×{∞}

|50px

BGCOLOR="#e0f0e0"

|align=center|{{CDD|node_1|4|node|4|node_1|2|node_1|infin|node}}
rr{4,4}×{∞}

|50px

rowspan=2|J45
A6
G24

|align=center|{{CDD|node_1|4|node_1|4|node|2|node_1|infin|node}}
t{4,4}×{∞}

|rowspan=2 align=center|Truncated/Bitruncated square prismatic (tassiph)

|rowspan=2|(4.8.8)

|rowspan=2|80px

|50px

BGCOLOR="#e0f0e0"

|align=center|{{CDD|node_1|4|node_1|4|node_1|2|node_1|infin|node}}
tr{4,4}×{∞}

|50px

BGCOLOR="#d0f0f0"

|J44
A11
G14

|align=center|{{CDD|node_h|4|node_h|4|node_h|2|node_1|infin|node}}
sr{4,4}×{∞}

|align=center|Snub square prismatic (sassiph)

|(3.3.4.3.4)

|80px

|50px

BGCOLOR="#d0f0f0"

|Nonuniform

|align=center|{{CDD|node_h|4|node_h|4|node_h|2x|node_h|infin|node}}
ht0,1,2,3{4,4,2,∞}

|

|

|

|

== The G̃<sub>2</sub>xĨ<sub>1</sub>(&infin;), [6,3,2,&infin;] prismatic group ==

class="wikitable"

!Indices

!Coxeter-Dynkin
and Schläfli
symbols

!Honeycomb name

!Plane
tiling

!Solids
(Partial)

!Tiling

J41
A4
G11

|{{CDD|node|6|node|3|node_1|2|node_1|infin|node}}
{3,6} × {∞}

|Triangular prismatic (tiph)

|(36)

|60px

|60px

rowspan=2|J42
A5
G26

|{{CDD|node_1|6|node|3|node|2|node_1|infin|node}}
{6,3} × {∞}

|rowspan=2 align=center|Hexagonal prismatic (hiph)

|rowspan=2|(63)

|60px

|60px

{{CDD|node|6|node_1|3|node_1|2|node_1|infin|node}}
t{3,6} × {∞}
60px

|60px

J43
A8
G18

|{{CDD|node|6|node_1|3|node|2|node_1|infin|node}}
r{6,3} × {∞}

|Trihexagonal prismatic (thiph)

|(3.6.3.6)

|60px

|60px

J46
A7
G19

|{{CDD|node_1|6|node_1|3|node|2|node_1|infin|node}}
t{6,3} × {∞}

|Truncated hexagonal prismatic (thaph)

|(3.12.12)

|60px

|60px

J47
A9
G16

|{{CDD|node_1|6|node|3|node_1|2|node_1|infin|node}}
rr{6,3} × {∞}

|Rhombi-trihexagonal prismatic (srothaph)

|(3.4.6.4)

|60px

|60px

BGCOLOR="#d0f0f0"

|J48
A12
G17

|{{CDD|node_h|6|node_h|3|node_h|2|node_1|infin|node}}
sr{6,3} × {∞}

|Snub hexagonal prismatic (snathaph)

|(3.3.3.3.6)

|60px

|60px

J49
A10
G23

|{{CDD|node_1|6|node_1|3|node_1|2|node_1|infin|node}}
tr{6,3} × {∞}

|truncated trihexagonal prismatic (grothaph)

|(4.6.12)

|60px

|60px

BGCOLOR="#d0f0f0"

|J65
A11'
G13

|{{CDD|node|infin|node_h|2x|node_h|infin|node_1|2|node_1|infin|node}}
{3,6}:e × {∞}

|elongated triangular prismatic (etoph)

|(3.3.3.4.4)

|60px

|60px

BGCOLOR="#d0f0f0"

|rowspan=2|J52
A2'
G2

|{{CDD|node|3|node|6|node_h|2x|node_h|infin|node}}
h3t{3,6,2,∞}

|rowspan=2|gyrated tetrahedral-octahedral (gytoh)

|rowspan=2|(36)

|rowspan=2|60px

|rowspan=2|60px

BGCOLOR="#d0f0f0"

|{{CDD|node|6|node_h|3|node_h|2x|node_h|infin|node}}
s2r{3,6,2,∞}

BGCOLOR="#d0f0f0"

|Nonuniform

|{{CDD|node_h|3|node_h|6|node_h|2x|node_h|infin|node}}
ht0,1,2,3{3,6,2,∞}

|

|

|

|

= Enumeration of Wythoff forms =

All nonprismatic Wythoff constructions by Coxeter groups are given below, along with their alternations. Uniform solutions are indexed with Branko Grünbaum's listing. Green backgrounds are shown on repeated honeycombs, with the relations are expressed in the extended symmetry diagrams.

class=wikitable style="text-align:center;"

!Coxeter group

!Extended
symmetry

!colspan=2|Honeycombs

!Chiral
extended
symmetry

!colspan=2|Alternation honeycombs

rowspan=4|[4,3,4]
{{CDD|node|4|node|3|node|4|node}}
[4,3,4]
{{CDD|node_c1|4|node_c2|3|node_c3|4|node_c4}}
6

| {{CDD|node_1|4|node|3|node|4|node}}22 | {{CDD|node|4|node_1|3|node|4|node}}7 | {{CDD|node_1|4|node_1|3|node|4|node}}8
{{CDD|node_1|4|node|3|node_1|4|node}}9 | {{CDD|node_1|4|node_1|3|node_1|4|node}}25 | {{CDD|node_1|4|node_1|3|node|4|node_1}}20

|[1+,4,3+,4,1+]

(2)

|{{CDD|node_h1|4|node|3|node|4|node}}1 | {{CDD|node_h|4|node_h|3|node_h|4|node}}b

BGCOLOR="#e0f0e0"

|[2+[4,3,4]]
{{CDD|node_c1|4|node|3|node|4|node_c1}} = {{CDD|node_c1|4|node|3|node|4|node}}

(1)

|{{CDD|node_1|4|node|3|node|4|node_1}} 22

|[2+[(4,3+,4,2+)]]

(1)

|{{CDD|branch|4a4b|branch_hh|label2}}1 | {{CDD|branch|4a4b|nodes_hh}}6

[2+[4,3,4]]
{{CDD|node_c1|4|node_c2|3|node_c2|4|node_c1}}
1

|{{CDD|node|4|node_1|3|node_1|4|node}}28

|[2+[(4,3+,4,2+)]]

(1)

|{{CDD|node|4|node_h|3|node_h|4|node}}a

[2+[4,3,4]]
{{CDD|node_c1|4|node_c2|3|node_c2|4|node_c1}}
2

|{{CDD|node_1|4|node_1|3|node_1|4|node_1}}27

|[2+[4,3,4]]+

(1)

|{{CDD|node_h|4|node_h|3|node_h|4|node_h}}c

rowspan=3|[4,31,1]
{{CDD|node|4|node|split1|nodes}}
[4,31,1]
{{CDD|node_c3|4|node_c4|split1|nodeab_c1-2}}
4

|{{CDD|node|4|node|split1|nodes_10lu}}1 | {{CDD|node_1|4|node|split1|nodes_10lu}}7 | {{CDD|node|4|node_1|split1|nodes_10lu}}10 | {{CDD|node_1|4|node_1|split1|nodes_10lu}}28

|colspan=3|

BGCOLOR="#e0f0e0" align=center

|rowspan=2|[1[4,31,1]]=[4,3,4]
{{CDD|node_c1|4|node_c2|split1|nodeab_c3}} = {{CDD|node_c1|4|node_c2|3|node_c3|4|node_h0}}

rowspan=2|(7)

|rowspan=2|{{CDD|node_1|4|node|split1|nodes}}22 | {{CDD|node|4|node_1|split1|nodes}}7 | {{CDD|node_1|4|node_1|split1|nodes}}22 | {{CDD|node|4|node|split1|nodes_11}}7 | {{CDD|node_1|4|node|split1|nodes_11}}9 | {{CDD|node|4|node_1|split1|nodes_11}}28 | {{CDD|node_1|4|node_1|split1|nodes_11}}25

|[1[1+,4,31,1]]+

(2)

|{{CDD|node_h1|4|node|split1|nodes}}1 | {{CDD|node_h1|4|node|split1|nodes_10lu}}6 | {{CDD|node|4|node_h|split1|nodes_hh}}a

BGCOLOR="#e0f0e0" align=center

|[1[4,31,1]]+
=[4,3,4]+

(1)

|{{CDD|node_h|4|node_h|split1|nodes_hh}}b

rowspan=5|[3[4]]
{{CDD|branch|3ab|branch}}
[3[4]]

|colspan=5|(none)

|[2+[3[4]]]
{{CDD|branch_c1|3ab|branch_c2}}
1

| {{CDD|branch_11|3ab|branch}}6

|colspan=3|

BGCOLOR="#e0f0e0" align=center[1[3[4]]]=[4,31,1]
{{CDD|node_c3|split1|nodeab_c1-2|split2|node_c3}} = {{CDD|node_h0|3|node_c3|split1|nodeab_c1-2}}
(2)

|{{CDD|node_1|split1|nodes|split2|node}}1 | {{CDD|node_1|split1|nodes_11|split2|node}}10

|colspan=3|

BGCOLOR="#e0f0e0"[2[3[4]]]=[4,3,4]
{{CDD|node_c1|split1|nodeab_c2|split2|node_c1}} = {{CDD|node_h0|4|node_c1|3|node_c2|4|node_h0}}
(1)

| {{CDD|node_1|split1|nodes|split2|node_1}}7

|colspan=3|

BGCOLOR="#e0f0e0" align=center

|[(2+,4)[3[4]]]=[2+[4,3,4]]
{{CDD|branch_c1|3ab|branch_c1}} = {{CDD|node_h0|4|node_c1|3|node_c1|4|node_h0}}

(1)

| {{CDD|branch_11|3ab|branch_11}}28

|[(2+,4)[3[4]]]+
= [2+[4,3,4]]+

|(1)

{{CDD|branch_hh|3ab|branch_hh}}a

=Examples=

The alternated cubic honeycomb is of special importance since its vertices form a cubic close-packing of spheres. The space-filling truss of packed octahedra and tetrahedra was apparently first discovered by Alexander Graham Bell and independently re-discovered by Buckminster Fuller (who called it the octet truss and patented it in the 1940s).

[http://tabletoptelephone.com/~hopspage/Fuller.html]

[http://members.cruzio.com/~devarco/energy.htm]

[https://web.archive.org/web/20050113123708/http://www.n55.dk/manuals/DISCUSSIONS/OTHER_TEXTS/CM_TEXT.html]

[http://www.cjfearnley.com/fuller-faq-2.html]. Octet trusses are now among the most common types of truss used in construction.

Frieze forms

If cells are allowed to be uniform tilings, more uniform honeycombs can be defined:

Families:

  • {\tilde{C}}_2×A_1: [4,4,2] {{CDD|node|4|node|4|node|2|node}} Cubic slab honeycombs (3 forms)
  • {\tilde{G}}_2×A_1: [6,3,2] {{CDD|node|6|node|3|node|2|node}} Tri-hexagonal slab honeycombs (8 forms)
  • {\tilde{A}}_2×A_1: [(3,3,3),2] {{CDD|node|split1|branch|2|node}} Triangular slab honeycombs (No new forms)
  • {\tilde{I}}_1×A_1×A_1: [∞,2,2] {{CDD|node|infin|node|2|node|2|node}} = {{CDD|node|infin|node|2|node|4|node}} Cubic column honeycombs (1 form)
  • I_2(p)×{\tilde{I}}_1: [p,2,∞] {{CDD|node|p|node|2|node|infin|node}} Polygonal column honeycombs (analogous to duoprisms: these look like a single infinite tower of p-gonal prisms, with the remaining space filled with apeirogonal prisms)
  • {\tilde{I}}_1×{\tilde{I}}_1×A_1: [∞,2,∞,2] = [4,4,2] - {{CDD|node|infin|node|2|node|infin|node|2|node}} = {{CDD|node|4|node|4|node|2|node}} (Same as cubic slab honeycomb family)

class=wikitable style="text-align:center; width:540px;"

|+ Examples (partially drawn)

Cubic slab honeycomb
{{CDD|node_1|4|node|4|node|2|node_1}}

!Alternated hexagonal slab honeycomb
{{CDD|node_h|2x|node_h|6|node|3|node}}

!Trihexagonal slab honeycomb
{{CDD|node|6|node_1|3|node|2|node_1}}

180px

|180px

|180px

180px
(4) 43: cube
(1) 44: square tiling

|180px
(4) 33: tetrahedron
(3) 34: octahedron
(1) 36: triangular tiling

|180px
(2) 3.4.4: triangular prism
(2) 4.4.6: hexagonal prism
(1) (3.6)2: trihexagonal tiling

The first two forms shown above are semiregular (uniform with only regular facets), and were listed by Thorold Gosset in 1900 respectively as the 3-ic semi-check and tetroctahedric semi-check.{{cite journal | last=Gosset | first=Thorold | authorlink = Thorold Gosset | title = On the regular and semi-regular figures in space of n dimensions | journal = Messenger of Mathematics | volume = 29 | pages = 43–48 | year = 1900}}

Scaliform honeycomb

A scaliform honeycomb is vertex-transitive, like a uniform honeycomb, with regular polygon faces while cells and higher elements are only required to be orbiforms, equilateral, with their vertices lying on hyperspheres. For 3D honeycombs, this allows a subset of Johnson solids along with the uniform polyhedra. Some scaliforms can be generated by an alternation process, leaving, for example, pyramid and cupola gaps.{{Cite web|url=http://bendwavy.org/klitzing/explain/polytope-tree.htm#scaliform|title = Polytope-tree}}

class=wikitable style="text-align:center; width:600px;"

|+ Euclidean honeycomb scaliforms

!colspan=3|Frieze slabs

!Prismatic stacks

s3{2,6,3}, {{CDD|node_h|2x|node_h|6|node|3|node_1}}

!s3{2,4,4}, {{CDD|node_h|2x|node_h|4|node|4|node_1}}

!s{2,4,4}, {{CDD|node_h|2x|node_h|4|node|4|node}}

!3s4{4,4,2,∞}, {{CDD|node|4|node|4|node_h|2x|node_h|infin|node_1}}

200px

|200px

|200px

|200px

40px 40px 40px

! 40px 40px 40px

! 40px 40px 40px

! 40px 40px 40px

valign=top

|200px
(1) 3.4.3.4: triangular cupola
(2) 3.4.6: triangular cupola
(1) 3.3.3.3: octahedron
(1) 3.6.3.6: trihexagonal tiling

|200px
(1) 3.4.4.4: square cupola
(2) 3.4.8: square cupola
(1) 3.3.3: tetrahedron
(1) 4.8.8: truncated square tiling

|200px
(1) 3.3.3.3: square pyramid
(4) 3.3.4: square pyramid
(4) 3.3.3: tetrahedron
(1) 4.4.4.4: square tiling

|200px
(1) 3.3.3.3: square pyramid
(4) 3.3.4: square pyramid
(4) 3.3.3: tetrahedron
(4) 4.4.4: cube

Hyperbolic forms

File:Hyperbolic orthogonal dodecahedral honeycomb.png, {5,3,4} in perspective]]

File:Hyperbolic 3d hexagonal tiling.png, {6,3,3}, in perspective]]

{{main|Uniform honeycombs in hyperbolic space}}

There are 9 Coxeter group families of compact uniform honeycombs in hyperbolic 3-space, generated as Wythoff constructions, and represented by ring permutations of the Coxeter-Dynkin diagrams for each family.

From these 9 families, there are a total of 76 unique honeycombs generated:

  • [3,5,3] : {{CDD|node|3|node|5|node|3|node}} - 9 forms
  • [5,3,4] : {{CDD|node|5|node|3|node|4|node}} - 15 forms
  • [5,3,5] : {{CDD|node|5|node|3|node|5|node}} - 9 forms
  • [5,31,1] : {{CDD|nodes|split2|node|5|node}} - 11 forms (7 overlap with [5,3,4] family, 4 are unique)
  • [(4,3,3,3)] : {{CDD|label4|branch|3ab|branch}} - 9 forms
  • [(4,3,4,3)] : {{CDD|label4|branch|3ab|branch|label4}} - 6 forms
  • [(5,3,3,3)] : {{CDD|label5|branch|3ab|branch}} - 9 forms
  • [(5,3,4,3)] : {{CDD|label5|branch|3ab|branch|label4}} - 9 forms
  • [(5,3,5,3)] : {{CDD|label5|branch|3ab|branch|label5}} - 6 forms

Several non-Wythoffian forms outside the list of 76 are known; it is not known how many there are.

= Paracompact hyperbolic forms =

{{main|Paracompact uniform honeycombs}}

There are also 23 paracompact Coxeter groups of rank 4. These families can produce uniform honeycombs with unbounded facets or vertex figure, including ideal vertices at infinity:

class=wikitable style="text-align:center;"

|+ Simplectic hyperbolic paracompact group summary

!Type

!Coxeter groups

!Unique honeycomb count

Linear graphs

|{{CDD|node|6|node|3|node|3|node}} | {{CDD|node|4|node|4|node|3|node}} | {{CDD|node|6|node|3|node|4|node}} | {{CDD|node|6|node|3|node|5|node}} | {{CDD|node|4|node|4|node|4|node}} | {{CDD|node|3|node|6|node|3|node}} | {{CDD|node|6|node|3|node|6|node}}

|4×15+6+8+8 = 82

Tridental graphs

| {{CDD|node|3|node|split1-44|nodes}} | {{CDD|node|6|node|split1|nodes}} | {{CDD|node|4|node|split1-44|nodes}}

|4+4+0 = 8

Cyclic graphs

| {{CDD|label6|branch|3ab|branch|2}} | {{CDD|label6|branch|3ab|branch|label4}} | {{CDD|label4|branch|4-4|branch}} | {{CDD|label6|branch|3ab|branch|label5}} | {{CDD|label6|branch|3ab|branch|label6}} | {{CDD|label4|branch|4-4|branch|label4}} | {{CDD|node|split1-44|nodes|split2|node}} | {{CDD|node|split1|branch|split2|node}} | {{CDD|branch|splitcross|branch}}

|4×9+5+1+4+1+0 = 47

Loop-n-tail graphs

|{{CDD|node|3|node|split1|branch}} | {{CDD|node|4|node|split1|branch}} | {{CDD|node|5|node|split1|branch}} | {{CDD|node|6|node|split1|branch}}

|4+4+4+2 = 14

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, {{ISBN|978-1-56881-220-5}} (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, Architectonic and Catoptric tessellations, p 292–298, includes all the nonprismatic forms)
  • Branko Grünbaum, (1994) Uniform tilings of 3-space. Geombinatorics 4, 49 - 56.
  • Norman Johnson (1991) Uniform Polytopes, Manuscript
  • {{The Geometrical Foundation of Natural Structure (book)}} (Chapter 5: Polyhedra packing and space filling)
  • {{cite book | first=Keith | last=Critchlow | author-link=Keith Critchlow | title=Order in Space: A design source book | publisher=Viking Press| year=1970 | isbn=0-500-34033-1 }}
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10] (1.9 Uniform space-fillings)
  • A. Andreini, (1905) Sulle reti di poliedri regolari e semiregolari e sulle corrispondenti reti correlative (On the regular and semiregular nets of polyhedra and on the corresponding correlative nets), Mem. Società Italiana della Scienze, Ser.3, 14 75–129. PDF [https://web.archive.org/web/20140429195143/http://media.accademiaxl.it/memorie/Serie3_T14.pdf]
  • D. M. Y. Sommerville, (1930) An Introduction to the Geometry of n Dimensions. New York, E. P. Dutton, . 196 pp. (Dover Publications edition, 1958) Chapter X: The Regular Polytopes
  • {{cite book | author= Anthony Pugh | year= 1976 | title= Polyhedra: A visual approach | publisher= University of California Press Berkeley | location= California | isbn= 0-520-03056-7 }} Chapter 5. Joining polyhedra
  • [https://books.google.com/books?id=nVx-tu596twC&q=space-filling+packings&pg=PA54 Crystallography of Quasicrystals: Concepts, Methods and Structures] by Walter Steurer, Sofia Deloudi (2009), p. 54-55. 12 packings of 2 or more uniform polyhedra with cubic symmetry