Corrin
{{Other uses|Corrin (disambiguation)}}
{{Chembox
| verifiedrevid = 443543138
| ImageFile = Corrin.svg
| ImageSize = 220px
| IUPACName = (5Z,9Z,14Z)-2,3,7,8,12,13,17,18,19,22-Decahydro-1H-corrinhttps://pubchem.ncbi.nlm.nih.gov/compound/6438343#section=IUPAC-Name&fullscreen=true
| OtherNames =
| Section1 = {{Chembox Identifiers
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 16736705
| InChIKey = WUPRCGRRQUZFAB-DEGKJRJSBL
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C19H22N4/c1-3-14-10-16-5-7-18(22-16)19-8-6-17(23-19)11-15-4-2-13(21-15)9-12(1)20-14/h9-11,18-19,22H,1-8H2/b12-9-,15-11-,16-10-
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = WUPRCGRRQUZFAB-DEGKJRJSSA-N
| CASNo_Ref = {{cascite|correct|??}}
| CASNo=262-76-0
| UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 288E04GRMT
| PubChem=6438343
| InChI = 1/C19H22N4/c1-3-14-10-16-5-7-18(22-16)19-8-6-17(23-19)11-15-4-2-13(21-15)9-12(1)20-14/h9-11,18-19,22H,1-8H2/b12-9-,15-11-,16-10-
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 33221
| SMILES = N=1C=4CCC=1\C=C2/NC(CC2)C\5CC/C(C=C3\CC/C(=N3)/C=4)=N/5
}}
| Section2 = {{Chembox Properties
| Formula=C19H22N4
| MolarMass=306.40478
| Appearance=
| Density=
| MeltingPt=
| BoilingPt=
| Solubility=
}}
| Section3 = {{Chembox Hazards
| MainHazards=
| FlashPt=
| AutoignitionPt =
}}
}}
Corrin is a heterocyclic compound. Although not known to exist on its own, the molecule is of interest as the parent macrocycle related to the cofactor and chromophore in vitamin B12. Its name reflects that it is the "core" of vitamin B12 (cobalamins). Compounds with a corrin core are known as "corrins".Nelson, D. L.; Cox, M. M. "Lehninger, Principles of Biochemistry" 3rd Ed. Worth Publishing: New York, 2000. {{ISBN|1-57259-153-6}}.
There are two chiral centres, which in natural compounds like cobalamin have the same stereochemistry.
Coordination chemistry
{{main|vitamin B12|l1=Vitamin B12}}
Upon deprotonation, the corrinoid ring is capable of binding cobalt. In vitamin B12, the resulting complex also features a benzimidazole-derived ligand, and the sixth site on the octahedron serves as the catalytic center.
The corrin ring resembles the porphyrin ring.{{cite journal |doi=10.1021/cr030720z|title=Chemistry and Enzymology of Vitamin B12 |year=2005 |last1=Brown |first1=Kenneth L. |journal=Chemical Reviews |volume=105 |issue=6 |pages=2075–2150 |pmid=15941210 }} Both feature four pyrrole-like subunits organized into rings. Corrins have a central 15-membered {{chem2|C11N4}} ring whereas porphryins have an interior 16-membered {{chem2|C12N4}} ring. All four nitrogen centers are linked by conjugation structure, with alternating double and single bonds. In contrast to porphyrins, corrins lack one of the carbon groups that link the pyrrole-like units into a fully conjugated structure. With a conjugated system that extends only 3/4 of the way around the ring, and does not include any of the outer edge carbons, corrins have a number of non-conjugated sp3 carbons, making them more flexible than porphyrins and not as flat. A third closely related biological structure, the chlorin ring system found in chlorophyll, is intermediate between porphyrin and corrin, having 20 carbons like the porphyrins and a conjugated structure extending all the way around the central atom, but with only 6 of the 8 edge carbons participating.
Corroles (octadehydrocorrins) are fully aromatic derivatives of corrins.
References
{{reflist}}
Further reading
- {{cite journal |last1=Kieninger |first1=Christoph |last2=Deery |first2=Evelyne |last3=Lawrence |first3=Andrew D. |last4=Podewitz |first4=Maren |last5=Wurst |first5=Klaus |last6=Nemoto‐Smith |first6=Emi |last7=Widner |first7=Florian J. |last8=Baker |first8=Joseph A. |last9=Jockusch |first9=Steffen |last10=Kreutz |first10=Christoph R. |last11=Liedl |first11=Klaus R. |last12=Gruber |first12=Karl |last13=Warren |first13=Martin J. |last14=Kräutler |first14=Bernhard |title=The Hydrogenobyric Acid Structure Reveals the Corrin Ligand as an Entatic State Module Empowering B 12 Cofactors for Catalysis |journal=Angewandte Chemie International Edition |date=29 July 2019 |volume=58 |issue=31 |pages=10756–10760 |doi=10.1002/anie.201904713|pmid=31115943 |pmc=6771967 }}
{{Tetrapyrroles}}