Coset construction

{{Short description|Construction for Virasoro algebras}}

In mathematics, the coset construction (or GKO construction) is a method of constructing unitary highest weight representations of the Virasoro algebra, introduced by Peter Goddard, Adrian Kent and David Olive (1986). The construction produces the complete discrete series of highest weight representations of the Virasoro algebra and demonstrates their unitarity, thus establishing the classification of unitary highest weight representations.

References

  • {{cite journal |first1=P. |last1=Goddard |first2=A. |last2=Kent |first3=D. |last3=Olive |title=Unitary representations of the Virasoro and super-Virasoro algebras |journal=Comm. Math. Phys. |volume=103 |issue=1 |year=1986 |pages=105–119 |doi=10.1007/BF01464283 |bibcode=1986CMaPh.103..105G |s2cid=91181508 |url=http://projecteuclid.org/euclid.cmp/1104114626 }}
  • {{springer|author=Victor Kac|title=Virasoro algebra|id=Virasoro_algebra}}
  • {{cite book |first1=V. G. |last1=Kac |first2=A. K. |last2=Raina |title=Bombay lectures on highest weight representations |publisher=World Sci. |year=1987 |isbn=9971-5-0395-6}}
  • {{cite web |author1-link=Antony Wassermann |first1=Antony |last1=Wassermann |url=http://iml.univ-mrs.fr/~wasserm/ |title=Lecture Notes on the Kac-Moody and Virasoro algebras|archive-url=https://web.archive.org/web/20070322074425/http://iml.univ-mrs.fr/~wasserm/ |archive-date=2007-03-22 }}

Category:Conformal field theory

Category:Lie algebras

{{quantum-stub}}