D7 polytope
{{DISPLAYTITLE:D7 polytope}}
class=wikitable align=right width=320
|+ Orthographic projections in the D7 Coxeter plane |
align=center
|160px |160px |
In 7-dimensional geometry, there are 95 uniform polytopes with D7 symmetry; 32 are unique, and 63 are shared with the B7 symmetry. There are two regular forms, the 7-orthoplex, and 7-demicube with 14 and 64 vertices respectively.
They can be visualized as symmetric orthographic projections in Coxeter planes of the D6 Coxeter group, and other subgroups.
__TOC__
Graphs
Symmetric orthographic projections of these 32 polytopes can be made in the D7, D6, D5, D4, D3, A5, A3, Coxeter planes. Ak has [k+1] symmetry, Dk has [2(k-1)] symmetry. B7 is also included although only half of its [14] symmetry exists in these polytopes.
These 32 polytopes are each shown in these 8 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
class="wikitable"
!rowspan=2|# !colspan=8|Coxeter plane graphs !rowspan=2|Coxeter diagram | |||||||||
B7 [14/2]||D7 [12]|| D6 [10]|| D5 [8]|| D4 [6]|| D3 [4]|| A5 [6]|| A3 [4] | |||||||||
---|---|---|---|---|---|---|---|---|---|
align=center
!1 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node}} = {{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node}} 7-demicube Demihepteract (Hesa) |
align=center
!2 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node}} = {{CDD|node_h|4|node|3|node_1|3|node|3|node|3|node|3|node}} Cantic 7-cube Truncated demihepteract (Thesa) |
align=center
!3 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node|3|node}} = {{CDD|node_h|4|node|3|node|3|node_1|3|node|3|node|3|node}} Runcic 7-cube Small rhombated demihepteract (Sirhesa) |
align=center
!4 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node|3|node}} = {{CDD|node_h|4|node|3|node|3|node|3|node_1|3|node|3|node}} Steric 7-cube Small prismated demihepteract (Sphosa) |
align=center
!5 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node}} = {{CDD|node_h|4|node|3|node|3|node|3|node|3|node_1|3|node}} Pentic 7-cube Small cellated demihepteract (Sochesa) |
align=center
!6 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node_1}} Hexic 7-cube Small terated demihepteract (Suthesa) |
align=center
!7 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node|3|node}} = {{CDD|node_h|4|node|3|node_1|3|node_1|3|node|3|node|3|node}} Runcicantic 7-cube Great rhombated demihepteract (Girhesa) |
align=center
!8 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node|3|node}} = {{CDD|node_h|4|node|3|node_1|3|node|3|node_1|3|node|3|node}} Stericantic 7-cube Prismatotruncated demihepteract (Pothesa) |
align=center
!9 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h|4|node|3|node_1|3|node_1|3|node|3|node|3|node}} Steriruncic 7-cube Prismatorhomated demihepteract (Prohesa) |
align=center
!10 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node}} = {{CDD|node_h|4|node|3|node_1|3|node|3|node|3|node_1|3|node}} Penticantic 7-cube Cellitruncated demihepteract (Cothesa) |
align=center
!11 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h|4|node|3|node|3|node_1|3|node|3|node_1|3|node}} Pentiruncic 7-cube Cellirhombated demihepteract (Crohesa) |
align=center
!12 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h|4|node|3|node|3|node|3|node_1|3|node_1|3|node}} Pentisteric 7-cube Celliprismated demihepteract (Caphesa) |
align=center
!13 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node_1}} = {{CDD|node_h|4|node|3|node_1|3|node|3|node|3|node|3|node_1}} Hexicantic 7-cube Teritruncated demihepteract (Tuthesa) |
align=center
!14 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node_1|3|node|3|node|3|node_1}} Hexiruncic 7-cube Terirhombated demihepteract (Turhesa) |
align=center
!15 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node|3|node_1|3|node|3|node_1}} Hexisteric 7-cube Teriprismated demihepteract (Tuphesa) |
align=center
!16 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node|3|node|3|node_1|3|node_1}} Hexipentic 7-cube Tericellated demihepteract (Tuchesa) |
align=center
!17 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node}} Steriruncicantic 7-cube Great prismated demihepteract (Gephosa) |
align=center
!18 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node}} Pentiruncicantic 7-cube Celligreatorhombated demihepteract (Cagrohesa) |
align=center
!19 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node}} Pentistericantic 7-cube Celliprismatotruncated demihepteract (Capthesa) |
align=center
!20 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node}} Pentisteriruncic 7-cube Celliprismatorhombated demihepteract (Coprahesa) |
align=center
!21 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h|4|node|3|node_1|3|node_1|3|node|3|node|3|node_1}} Hexiruncicantic 7-cube Terigreatorhombated demihepteract (Tugrohesa) |
align=center
!22 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h|4|node|3|node_1|3|node|3|node_1|3|node|3|node_1}} Hexistericantic 7-cube Teriprismatotruncated demihepteract (Tupthesa) |
align=center
!23 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node|3|node_1|3|node|3|node_1}} Hexisteriruncic 7-cube Teriprismatorhombated demihepteract (Tuprohesa) |
align=center
!24 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h|4|node|3|node_1|3|node|3|node|3|node_1|3|node_1}} Hexipenticantic 7-cube Tericellitruncated demihepteract (Tucothesa) |
align=center
!25 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node_1|3|node|3|node_1|3|node_1}} Hexipentiruncic 7-cube Tericellirhombated demihepteract (Tucrohesa) |
align=center
!26 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node|3|node_1|3|node_1|3|node_1}} Hexipentisteric 7-cube Tericelliprismated demihepteract (Tucophesa) |
align=center
!27 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node}} Pentisteriruncicantic 7-cube Great cellated demihepteract (Gochesa) |
align=center
!28 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node_1|3|node_1|3|node|3|node_1}} Hexisteriruncicantic 7-cube Terigreatoprimated demihepteract (Tugphesa) |
align=center
!29 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node_1|3|node|3|node_1|3|node_1}} Hexipentiruncicantic 7-cube Tericelligreatorhombated demihepteract (Tucagrohesa) |
align=center
!30 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} Hexipentistericantic 7-cube Tericelliprismatotruncated demihepteract (Tucpathesa) |
align=center
!31 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h|4|node|3|node|3|node|3|node_1|3|node_1|3|node_1}} Hexipentisteriruncic 7-cube Tericellprismatorhombated demihepteract (Tucprohesa) |
align=center
!32 | 80px | 80px | 80px | 80px | 80px | 80px | 80px | 80px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} Hexipentisteriruncicantic 7-cube Great terated demihepteract (Guthesa) |
References
- H.S.M. Coxeter:
- H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
- Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter]
- (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
- (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- {{KlitzingPolytopes|polypeta.htm|7D|uniform polytopes (polyexa)}}