D8 polytope
{{Short description|Uniform polytopes with D8 symmetry}}
{{DISPLAYTITLE:D8 polytope}}
class="wikitable" style="float:right; width:320px;"
|+ Orthographic projections in the D8 Coxeter plane |
align=center
|160px |160px |
In 8-dimensional geometry, there are 191 uniform polytopes with D8 symmetry, 64 are unique, and 127 are shared with the B8 symmetry. There are two regular forms, the 8-orthoplex, and 8-demicube with 16 and 128 vertices respectively.
They can be visualized as symmetric orthographic projections in Coxeter planes of the D8 Coxeter group, and other subgroups.
__TOC__
Graphs
Symmetric orthographic projections of these 64 polytopes can be made in the D8, D7, D6, D5, D4, D3, A5, A3, Coxeter planes. Ak has [k+1] symmetry, Dk has [2(k-1)] symmetry. B8 is also included although only half of its [16] symmetry exists in these polytopes.
These 64 polytopes are each shown in these 10 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
class="wikitable" | |||||||||||
rowspan=2|#
!colspan=10|Coxeter plane graphs !rowspan=2|Coxeter diagram | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
B8 [16/2]||D8 [14]|| D7 [12]|| D6 [10]|| D5 [8]|| D4 [6]|| D3 [4]|| A7 [8]|| A5 [6]|| A3 [4] | |||||||||||
align=center
!1 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|3|node|3|node}} 8-demicube (hocto) |
align=center
!2 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node|3|node|3|node}} cantic 8-cube (thocto) |
align=center
!3 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node|3|node|3|node}} runcic 8-cube |
align=center
!4 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node|3|node|3|node}} steric 8-cube |
align=center
!5 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1|3|node|3|node}} pentic 8-cube |
align=center
!6 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1|3|node|3|node}} hexic 8-cube |
align=center
!7 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|3|node|3|node_1}} heptic 8-cube |
align=center
!8 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node}} |
align=center
!9 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node}} | |
align=center
!10 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node}} | |
align=center
!11 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node}} |
align=center
!12 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node}} | |
align=center
!13 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node}} | |
align=center
!14 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node}} | |
align=center
!15 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node}} | |
align=center
!16 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node}} | |
align=center
!17 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node}} | |
align=center
!18 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node|3|node|3|node_1}} | |
align=center
!19 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node|3|node|3|node_1}} | |
align=center
!20 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node|3|node|3|node_1}} | |
align=center
!21 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1|3|node|3|node_1}} | |
align=center
!22 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node|3|node_1|3|node_1}} |
align=center
!23 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node}} | |
align=center
!24 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node}} | ||
align=center
!25 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node}} | ||
align=center
!26 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node}} | ||
align=center
!27 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node}} | ||
align=center
!28 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node}} | ||
align=center
!29 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node}} | ||
align=center
!30 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node}} | ||
align=center
!31 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node}} | ||
align=center
!32 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node}} | |
align=center
!33 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node|3|node|3|node_1}} | |
align=center
!34 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node|3|node|3|node_1}} | ||
align=center
!35 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node|3|node|3|node_1}} | |
align=center
!36 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1|3|node|3|node_1}} | ||
align=center
!37 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1|3|node|3|node_1}} | ||
align=center
!38 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1|3|node|3|node_1}} | |
align=center
!39 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node|3|node_1|3|node_1}} | |
align=center
!40 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node|3|node_1|3|node_1}} | |
align=center
!41 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node|3|node_1|3|node_1}} | |
align=center
!42 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node|3|node_1|3|node_1|3|node_1}} | |
align=center
!43 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node}} | ||
align=center
!44 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node}} | ||
align=center
!45 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node}} | ||
align=center
!46 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node}} | ||
align=center
!47 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} | ||
align=center
!48 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node|3|node_1}} | ||
align=center
!49 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node|3|node_1}} | ||
align=center
!50 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node|3|node_1}} | ||
align=center
!51 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} | ||
align=center
!52 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node|3|node_1|3|node_1}} | ||
align=center
!53 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node|3|node_1|3|node_1}} | ||
align=center
!54 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} | ||
align=center
!55 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node|3|node_1|3|node_1|3|node_1}} | ||
align=center
!56 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} | ||
align=center
!57 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} | ||
align=center
!58 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node}} | ||
align=center
!59 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node|3|node_1}} | ||
align=center
!60 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node|3|node_1|3|node_1}} | ||
align=center
!61 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node|3|node_1|3|node_1|3|node_1}} | ||
align=center
!62 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node|3|node_1|3|node_1|3|node_1|3|node_1}} | ||
align=center
!63 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} | ||
align=center
!64 | 60px | 60px | 60px | 60px | 60px | 60px | 60px | 60px | {{CDD|nodes_10ru|split2|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} = {{CDD|node_h1|4|node|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1|3|node_1}} |