Dade's conjecture

In finite group theory, Dade's conjecture is a conjecture relating the numbers of characters of blocks of a finite group to the numbers of characters of blocks of local subgroups, introduced by Everett C. Dade.

References

  • {{Citation | last1=Dade | first1=Everett C. | author1-link=Everett C. Dade | title=Counting characters in blocks. I | doi=10.1007/BF01232023 | mr=1168370 | year=1992 | journal=Inventiones Mathematicae | issn=0020-9910 | volume=109 | issue=1 | pages=187–210| bibcode=1992InMat.109..187D | s2cid=121655449 }}
  • {{Citation | last1=Dade | first1=Everett C. | author1-link=Everett C. Dade | title=Counting characters in blocks. II | doi=10.1515/crll.1994.448.97 | mr=1266748 | year=1994 | journal=Journal für die reine und angewandte Mathematik | issn=0075-4102 | volume=1994 | issue=448 | pages=97–190| s2cid=116626705 }}
  • {{Citation | last1=Dade | first1=Everett C. | author1-link=Everett C. Dade | editor1-last=Solomon | editor1-first=Ronald | title=Representation theory of finite groups (Columbus, OH, 1995) | publisher=de Gruyter | location=Berlin | series=Ohio State Univ. Math. Res. Inst. Publ. | isbn=978-3-11-015806-9 | mr=1611009 | year=1997 | volume=6 | chapter=Counting characters in blocks. II.9 | pages=45–59}}

Category:Finite groups

Category:Representation theory

Category:Conjectures

{{group-theory-stub}}