Day convolution
{{Short description|Convolution}}
In mathematics, specifically in category theory, Day convolution is an operation on functors that can be seen as a categorified version of function convolution. It was first introduced by Brian Day in 1970{{cite journal |last1=Day |first1=Brian |title=On closed categories of functors |journal=Reports of the Midwest Category Seminar IV, Lecture Notes in Mathematics |date=1970 |volume=139 |pages=1–38}} in the general context of enriched functor categories.
Day convolution gives a symmetric monoidal structure on for two symmetric monoidal categories .
Another related version is that Day convolution acts as a tensor product for a monoidal category structure on the category of functors over some monoidal category .
Definition
= First version =
Given for two symmetric monoidal , we define their Day convolution as follows.
It is the left kan extension along of the composition
Thus evaluated on an object , intuitively we get a colimit in of along approximations of as a pure tensor
Left kan extensions are computed via coends, which leads to the version below.
= Enriched version =
Let be a monoidal category enriched over a symmetric monoidal closed category . Given two functors , we define their Day convolution as the following coend.{{cite book |last1=Loregian |first1=Fosco |title=(Co)end Calculus |chapter= |arxiv=1501.02503 |page=51|year=2021 |doi=10.1017/9781108778657 |isbn=9781108778657 |s2cid=237839003 }}
:
If is symmetric, then is also symmetric. We can show this defines an associative monoidal product:
:
\cong {} & \int^{c_1,c_2} (F \otimes_d G)c_1 \otimes Hc_2 \otimes \mathbf{C}(c_1 \otimes_c c_2, -) \\[5pt]
\cong {} & \int^{c_1,c_2} \left( \int^{c_3,c_4} Fc_3 \otimes Gc_4 \otimes \mathbf{C}(c_3 \otimes_c c_4 , c_1) \right) \otimes Hc_2 \otimes \mathbf{C}(c_1 \otimes_c c_2, -) \\[5pt]
\cong {} & \int^{c_1,c_2,c_3,c_4} Fc_3 \otimes Gc_4 \otimes Hc_2 \otimes \mathbf{C}(c_3 \otimes_c c_4 , c_1) \otimes \mathbf{C}(c_1 \otimes_c c_2, -) \\[5pt]
\cong {} & \int^{c_1,c_2,c_3,c_4} Fc_3 \otimes Gc_4 \otimes Hc_2 \otimes \mathbf{C}(c_3 \otimes_c c_4 \otimes_c c_2, -) \\[5pt]
\cong {} & \int^{c_1,c_2,c_3,c_4} Fc_3 \otimes Gc_4 \otimes Hc_2 \otimes \mathbf{C}(c_2 \otimes_c c_4 , c_1) \otimes \mathbf{C}(c_3 \otimes_c c_1, -) \\[5pt]
\cong {} & \int^{c_1,c_3} Fc_3 \otimes (G \otimes_d H)c_1 \otimes \mathbf{C}(c_3 \otimes_c c_1, -) \\[5pt]
\cong {} & F \otimes_d (G \otimes_d H)\end{aligned}
References
{{reflist}}
External links
- {{nlab|id=Day+convolution|title=Day convolution}}