De Rham–Weil theorem

In algebraic topology, the De Rham–Weil theorem allows computation of sheaf cohomology using an acyclic resolution of the sheaf in question.

Let \mathcal F be a sheaf on a topological space X and \mathcal F^\bullet a resolution of \mathcal F by acyclic sheaves. Then

: H^q(X,\mathcal F) \cong H^q(\mathcal F^\bullet(X)),

where H^q(X,\mathcal F) denotes the q-th sheaf cohomology group of X with coefficients in \mathcal F.

The De Rham–Weil theorem follows from the more general fact that derived functors may be computed using acyclic resolutions instead of simply injective resolutions.

See also

References

  • {{cite book |url=http://www.numdam.org/item/THESE_1931__129__1_0/|title=Sur l'analysis situs des variétés à n dimensions|series=Thèses de l'entre-deux-guerres |year=1931|volume= 129 |last1=De Rham |first1=Georges|author1-link=Georges de Rham }}
  • {{cite journal |doi=10.1016/0040-9383(67)90002-X|title=On de Rham's theorem |year=1967 |last1=Samelson |first1=Hans|author1-link=Hans Samelson |journal=Topology |volume=6 |issue=4 |pages=427–432 |doi-access=free }}
  • {{cite journal |doi=10.1007/BF02564296|title=Sur les théorèmes de de Rham |year=1952 |last1=Weil |first1=André |author-link = André Weil|journal=Commentarii Mathematici Helvetici |volume=26 |pages=119–145 |s2cid=124799328 }}

{{PlanetMath attribution|id=6333|title=De Rham–Weil theorem}}

{{DEFAULTSORT:De Rham-Weil theorem}}

Category:Homological algebra

Category:Sheaf theory

Category:Theorems in algebraic geometry