De Rham–Weil theorem
In algebraic topology, the De Rham–Weil theorem allows computation of sheaf cohomology using an acyclic resolution of the sheaf in question.
Let be a sheaf on a topological space and a resolution of by acyclic sheaves. Then
:
where denotes the -th sheaf cohomology group of with coefficients in
The De Rham–Weil theorem follows from the more general fact that derived functors may be computed using acyclic resolutions instead of simply injective resolutions.
See also
References
- {{cite book |url=http://www.numdam.org/item/THESE_1931__129__1_0/|title=Sur l'analysis situs des variétés à n dimensions|series=Thèses de l'entre-deux-guerres |year=1931|volume= 129 |last1=De Rham |first1=Georges|author1-link=Georges de Rham }}
- {{cite journal |doi=10.1016/0040-9383(67)90002-X|title=On de Rham's theorem |year=1967 |last1=Samelson |first1=Hans|author1-link=Hans Samelson |journal=Topology |volume=6 |issue=4 |pages=427–432 |doi-access=free }}
- {{cite journal |doi=10.1007/BF02564296|title=Sur les théorèmes de de Rham |year=1952 |last1=Weil |first1=André |author-link = André Weil|journal=Commentarii Mathematici Helvetici |volume=26 |pages=119–145 |s2cid=124799328 }}
{{PlanetMath attribution|id=6333|title=De Rham–Weil theorem}}
{{DEFAULTSORT:De Rham-Weil theorem}}