Delaporte distribution

{{Infobox probability distribution

| name = Delaporte

| type = discrete

| pdf_image = File:DelaportePMF.svg
When \alpha and \beta are 0, the distribution is the Poisson.
When \lambda is 0, the distribution is the negative binomial.

| cdf_image = File:DelaporteCDF.svg
When \alpha and \beta are 0, the distribution is the Poisson.
When \lambda is 0, the distribution is the negative binomial.

| notation =

| parameters = \lambda > 0 (fixed mean)

\alpha, \beta > 0 (parameters of variable mean)

| support = k \in \{0, 1, 2, \ldots\}

| pdf = \sum_{i=0}^k\frac{\Gamma(\alpha + i)\beta^i\lambda^{k-i}e^{-\lambda}}{\Gamma(\alpha)i!(1+\beta)^{\alpha+i}(k-i)!}

| cdf = \sum_{j=0}^k\sum_{i=0}^j\frac{\Gamma(\alpha + i)\beta^i\lambda^{j-i}e^{-\lambda}}{\Gamma(\alpha)i!(1+\beta)^{\alpha+i}(j-i)!}

| mean = \lambda + \alpha\beta

| median =

| mode = \begin{cases}z, z+1 & \{z \in \mathbb{Z}\}:\; z = (\alpha-1)\beta+\lambda\\ \lfloor z \rfloor & \textrm{otherwise}\end{cases}

| variance = \lambda + \alpha\beta(1+\beta)

| skewness = See #Properties

| kurtosis = See #Properties

| entropy =

| mgf = \frac{e^{\lambda(e^{t}-1)}}{(1-\beta(e^{t}-1))^\alpha}

| cf =

| pgf =

| fisher = }}

The Delaporte distribution is a discrete probability distribution that has received attention in actuarial science.{{cite encyclopedia

| last = Panjer

| author-link = Harry Panjer

| first = Harry H.

| editor1-last = Teugels

| editor1-first = Jozef L.

| editor2-first = Bjørn

| editor2-last = Sundt

| encyclopedia = Encyclopedia of Actuarial Science

| title = Discrete Parametric Distributions

| year = 2006

| publisher = John Wiley & Sons

| isbn = 978-0-470-01250-5

| doi = 10.1002/9780470012505.tad027

}}

It can be defined using the convolution of a negative binomial distribution with a Poisson distribution.{{cite book

| last1 = Johnson

| first1 = Norman Lloyd

| author1-link = Norman Lloyd Johnson

| last2 = Kemp

| first2 = Adrienne W.

| last3 = Kotz

| first3 = Samuel

| author3-link = Samuel Kotz

| title = Univariate discrete distributions

| edition = Third

| year = 2005

| publisher = John Wiley & Sons

| isbn = 978-0-471-27246-5

| pages = 241–242

}}

Just as the negative binomial distribution can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a gamma distribution, the Delaporte distribution can be viewed as a compound distribution based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the \lambda parameter, and a gamma-distributed variable component, which has the \alpha and \beta parameters.{{cite book

| last1 = Vose

| first1 = David

| title = Risk analysis: a quantitative guide

| edition = Third, illustrated

| year = 2008

| publisher = John Wiley & Sons

| isbn = 978-0-470-51284-5

| lccn = 2007041696

| pages = 618–619

}}

The distribution is named for Pierre Delaporte, who analyzed it in relation to automobile accident claim counts in 1959,{{cite journal

| last1 = Delaporte

| first1 = Pierre J.

| year = 1960

| title = Quelques problèmes de statistiques mathématiques poses par l'Assurance Automobile et le Bonus pour non sinistre

|trans-title= Some problems of mathematical statistics as related to automobile insurance and no-claims bonus

| journal = Bulletin Trimestriel de l'Institut des Actuaires Français

| volume = 227

| pages = 87–102

| language = French

}}

although it appeared in a different form as early as 1934 in a paper by Rolf von Lüders,{{cite journal

| last1 = von Lüders

| first1 = Rolf

| year = 1934

| title = Die Statistik der seltenen Ereignisse

|trans-title= The statistics of rare events

| journal = Biometrika

| volume = 26

| issue = 1–2

| pages = 108–128

| language = German

| doi=10.1093/biomet/26.1-2.108

| jstor=2332055

}}

where it was called the Formel II distribution.

Properties

The skewness of the Delaporte distribution is:

\frac{\lambda + \alpha\beta(1+3\beta+2\beta^2)}{\left(\lambda + \alpha\beta(1+\beta)\right)^{\frac{3}{2}}}

The excess kurtosis of the distribution is:

\frac{\lambda+3\lambda^2+\alpha\beta(1+6\lambda+6\lambda\beta+7\beta+12\beta^2+6\beta^3+3\alpha\beta+6\alpha\beta^2+3\alpha\beta^3)}{\left(\lambda + \alpha\beta(1+\beta)\right)^2}

References

{{Reflist}}

Further reading

  • {{cite journal|

last1=Murat |first1= M.

|last2=Szynal |first2= D.

|title= On moments of counting distributions satisfying the k'th-order recursion and their compound distributions

|journal=Journal of Mathematical Sciences

|year=1998

|pages=4038–4043

|volume= 92 |issue= 4

|doi= 10.1007/BF02432340 |s2cid= 122625458

|doi-access= free

|ref = none

}}