Delsarte–Goethals code

{{Orphan|date=October 2019}}

{{technical|date=May 2017}}

The Delsarte–Goethals code is a type of error-correcting code.

History

The concept was introduced by mathematicians Philippe Delsarte and J.-M. Goethals in their published paper.{{Cite web|url=https://www.encyclopediaofmath.org/index.php/Delsarte-Goethals_code|title=Delsarte-Goethals code - Encyclopedia of Mathematics|website=www.encyclopediaofmath.org|language=en|access-date=2017-05-22}}{{Cite book|url=https://books.google.com/books?id=ujnhBwAAQBAJ&q=delsarte+goethals&pg=PA118|title=Encyclopaedia of Mathematics, Supplement III|last=Hazewinkel|first=Michiel|date=2007-11-23|publisher=Springer Science & Business Media|isbn=9780306483738|language=en}}

A new proof of the properties of the Delsarte–Goethals code was published in 1970.{{Cite journal|title=A new proof of Delsarte, Goethals and Mac Williams theorem on minimal weight codewords of generalized Reed–Muller codes - ScienceDirect|language=en|doi=10.1016/j.ffa.2011.12.003|volume=18|issue=3|journal=Finite Fields and Their Applications|pages=581–586 | last1 = Leducq | first1 = Elodie|year=2012|url=http://hal.archives-ouvertes.fr/docs/00/44/69/13/PDF/poidsminarxiv.pdf|doi-access=free}}

Function

The Delsarte–Goethals code DG(m,r) for even m ≥ 4 and 0 ≤ rm/2 − 1 is a binary, non-linear code of length 2^{m}, size 2^{r(m-1)+2m} and minimum distance 2^{m-1} - 2^{m/2-1+r}

The code sits between the Kerdock code and the second-order Reed–Muller codes. More precisely, we have

: K(m) \subseteq DG(m,r) \subseteq RM(2,m)

When r = 0, we have DG(m,r) = K(m) and when r = m/2 − 1 we have DG(m,r) = RM(2,m).

For r = m/2 − 1 the Delsarte–Goethals code has strength 7 and is therefore an orthogonal array OA(2^{3m-1}, 2^m, \mathbb{Z}_2, 7).{{Cite web|url=http://mint.sbg.ac.at/desc_CDelsarteGoethals.html|title=MinT - Delsarte–Goethals Codes|last=Schürer|first=Rudolf|website=mint.sbg.ac.at|access-date=2017-05-22}}{{Cite book|url=https://books.google.com/books?id=ujnhBwAAQBAJ&q=delsarte+goethals&pg=PA118|title=Encyclopaedia of Mathematics, Supplement III|last=Hazewinkel|first=Michiel|date=2007-11-23|publisher=Springer Science & Business Media|isbn=9780306483738|language=en}}

References

{{reflist}}

{{DEFAULTSORT:Delsarte-Goethals code}}

Category:Coding theory

Category:Error detection and correction