Demihypercube

{{short description|Polytope constructed from alternation of an hypercube}}

{{distinguish|Hemicube (geometry)}}

File:CubeAndStel.svg of the {{nowrap|n-cube}} yields one of two {{nowrap|n-demicubes}}, as in this {{nowrap|3-dimensional}} illustration of the two tetrahedra that arise as the {{nowrap|3-demicubes}} of the {{nowrap|3-cube}}.]]

In geometry, demihypercubes (also called n-demicubes, n-hemicubes, and half measure polytopes) are a class of n-polytopes constructed from alternation of an n-hypercube, labeled as n for being half of the hypercube family, γn. Half of the vertices are deleted and new facets are formed. The 2n facets become 2n (n−1)-demicubes, and 2n (n−1)-simplex facets are formed in place of the deleted vertices.Regular and semi-regular polytopes III, p. 315-316

They have been named with a demi- prefix to each hypercube name: demicube, demitesseract, etc. The demicube is identical to the regular tetrahedron, and the demitesseract is identical to the regular 16-cell. The demipenteract is considered semiregular for having only regular facets. Higher forms do not have all regular facets but are all uniform polytopes.

The vertices and edges of a demihypercube form two copies of the halved cube graph.

An n-demicube has inversion symmetry if n is even.

Discovery

Thorold Gosset described the demipenteract in his 1900 publication listing all of the regular and semiregular figures in n-dimensions above three. He called it a 5-ic semi-regular. It also exists within the semiregular k21 polytope family.

The demihypercubes can be represented by extended Schläfli symbols of the form h{4,3,...,3} as half the vertices of {4,3,...,3}. The vertex figures of demihypercubes are rectified n-simplexes.

Constructions

They are represented by Coxeter-Dynkin diagrams of three constructive forms:

  1. {{CDD|node_h|2c|node_h|2c|node_h}}...{{CDD|node_h}} (As an alternated orthotope) s{21,1,...,1}
  2. {{CDD|node_h|4|node|3}}...{{CDD|3|node}} (As an alternated hypercube) h{4,3n−1}
  3. {{CDD|nodes_10ru|split2|node|3}}...{{CDD|3|node}}. (As a demihypercube) {31,n−3,1}

H.S.M. Coxeter also labeled the third bifurcating diagrams as 1k1 representing the lengths of the three branches and led by the ringed branch.

An n-demicube, n greater than 2, has n(n−1)/2 edges meeting at each vertex. The graphs below show less edges at each vertex due to overlapping edges in the symmetry projection.

class="wikitable"

!rowspan=2|n

!rowspan=2| 1k1 

!rowspan=2|Petrie
polygon

!rowspan=2|Schläfli symbol

!rowspan=2|Coxeter diagrams
A1n
Bn
Dn

!colspan=10|Elements

!rowspan=2|Facets:
Demihypercubes &
Simplexes

!rowspan=2|Vertex figure

Vertices

!Edges     

!Faces

!Cells

!4-faces

!5-faces

!6-faces

!7-faces

!8-faces

!9-faces

2

! 1−1,1

|align=center|demisquare
(digon)
60px

|s{2}
h{4}
{31,−1,1}

|width=150|{{CDD|node_h|2c|node_h}}
{{CDD|node_h|4|node}}
{{CDD|node_1|2c|node}}

|2

|2


2 edges

| --

3

! 101

|align=center|demicube
(tetrahedron)
60px60px

|s{21,1}
h{4,3}
{31,0,1}

|{{CDD|node_h|2c|node_h|2c|node_h}}
{{CDD|node_h|4|node|3|node}}
{{CDD|nodes_10ru|split2|node}}

|4

|6

|4

| (6 digons)
4 triangles

|Triangle
(Rectified triangle)

4

! 111

|align=center|demitesseract
(16-cell)
60px60px

|s{21,1,1}
h{4,3,3}
{31,1,1}

|{{CDD|node_h|2c|node_h|2c|node_h|2c|node_h}}
{{CDD|node_h|4|node|3|node|3|node}}
{{CDD|nodes_10ru|split2|node|3|node}}

|8

|24

|32

|16

|8 demicubes
(tetrahedra)
8 tetrahedra

|Octahedron
(Rectified tetrahedron)

5

! 121

|align=center|demipenteract
60px60px

|s{21,1,1,1}
h{4,33}{31,2,1}

|{{CDD|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h}}
{{CDD|node_h|4|node|3|node|3|node|3|node}}
{{CDD|nodes_10ru|split2|node|3|node|3|node}}

|16

|80

|160

|120

|26

|10 16-cells
16 5-cells

|Rectified 5-cell

6

! 131

|align=center|demihexeract
60px60px

|s{21,1,1,1,1}
h{4,34}{31,3,1}

|{{CDD|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node}}

|32

|240

|640

|640

|252

|44

|12 demipenteracts
32 5-simplices

|Rectified hexateron

7

! 141

|align=center|demihepteract
60px60px

|s{21,1,1,1,1,1}
h{4,35}{31,4,1}

|{{CDD|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node}}

|64

|672

|2240

|2800

|1624

|532

|78

|14 demihexeracts
64 6-simplices

|Rectified 6-simplex

8

! 151

|align=center|demiocteract
60px60px

|s{21,1,1,1,1,1,1}
h{4,36}{31,5,1}

|{{CDD|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node|3|node}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node}}

|128

|1792

|7168

|10752

|8288

|4032

|1136

|144

|16 demihepteracts
128 7-simplices

|Rectified 7-simplex

9

! 161

|align=center|demienneract
60px60px

|s{21,1,1,1,1,1,1,1}
h{4,37}{31,6,1}

|{{CDD|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|3|node}}

|256

|4608

|21504

|37632

|36288

|23520

|9888

|2448

|274

|18 demiocteracts
256 8-simplices

|Rectified 8-simplex

10

! 171

|align=center|demidekeract
60px60px

|s{21,1,1,1,1,1,1,1,1}
h{4,38}{31,7,1}

|{{CDD|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node|3|node|3|node|3|node}}

|512

|11520

|61440

|122880

|142464

|115584

|64800

|24000

|5300

|532

|20 demienneracts
512 9-simplices

|Rectified 9-simplex

...
n

! 1n−3,1

|align=center|n-demicube

|s{21,1,...,1}
h{4,3n−2}{31,n−3,1}

|{{CDD|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h|2c|node_h}}...{{CDD|node_h}}
{{CDD|node_h|4|node|3|node|3|node|3|node|3|node|3|node}}...{{CDD|3|node}}
{{CDD|nodes_10ru|split2|node|3|node|3|node|3|node|3|node}}...{{CDD|3|node}}

|2n−1

|colspan=9| 

|2n (n−1)-demicubes
2n−1 (n−1)-simplices

|Rectified (n−1)-simplex

In general, a demicube's elements can be determined from the original n-cube: (with Cn,m = mth-face count in n-cube = 2nm n!/(m!(nm)!))

  • Vertices: Dn,0 = 1/2 Cn,0 = 2n−1 (Half the n-cube vertices remain)
  • Edges: Dn,1 = Cn,2 = 1/2 n(n−1) 2n−2 (All original edges lost, each square faces create a new edge)
  • Faces: Dn,2 = 4 * Cn,3 = 2/3 n(n−1)(n−2) 2n−3 (All original faces lost, each cube creates 4 new triangular faces)
  • Cells: Dn,3 = Cn,3 + 23 Cn,4 (tetrahedra from original cells plus new ones)
  • Hypercells: Dn,4 = Cn,4 + 24 Cn,5 (16-cells and 5-cells respectively)
  • ...
  • [For m = 3,...,n−1]: Dn,m = Cn,m + 2m Cn,m+1 (m-demicubes and m-simplexes respectively)
  • ...
  • Facets: Dn,n−1 = 2n + 2n−1 ((n−1)-demicubes and (n−1)-simplices respectively)

Symmetry group

The stabilizer of the demihypercube in the hyperoctahedral group (the Coxeter group BC_n [4,3n−1]) has index 2. It is the Coxeter group D_n, [3n−3,1,1] of order 2^{n-1}n!, and is generated by permutations of the coordinate axes and reflections along pairs of coordinate axes.{{cite web|url=http://math.ucr.edu/home/baez/week187.html|title=week187|website=math.ucr.edu|access-date=20 April 2018}}

Orthotopic constructions

File:Rhombic disphenoid.png]]

Constructions as alternated orthotopes have the same topology, but can be stretched with different lengths in n-axes of symmetry.

The rhombic disphenoid is the three-dimensional example as alternated cuboid. It has three sets of edge lengths, and scalene triangle faces.

See also

References

{{Reflist}}

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, {{ISBN|978-1-56881-220-5}} (Chapter 26. pp. 409: Hemicubes: 1n1)
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, {{ISBN|978-0-471-01003-6}} [http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471010030.html]
  • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]