Denitrobacterium

{{Short description|Genus of bacteria}}

{{Italic title}}

{{Taxobox

| name = Denitrobacterium

| domain = Bacteria

| regnum = Bacillati

| phylum = Actinomycetota

| classis = Coriobacteriia

| ordo = Eggerthellales

| familia = Eggerthellaceae

| genus = Denitrobacterium

| genus_authority = Anderson et al. 2000{{cite web |author=A.C. Parte |url=https://lpsn.dsmz.de/genus/Denitrobacterium |title=Denitrobacterium |access-date=2025-02-28 |publisher=List of Prokaryotic names with Standing in Nomenclature (LPSN) |display-authors=et al.}}

| type_species = Denitrobacterium detoxificans

| type_species_authority = Anderson et al. 2000

| subdivision_ranks = Species{{cite web |author=C.L. Schoch |url=https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree&id=79603&lvl=3&lin=f&keep=1&srchmode=1&unlock |title=Denitrobacterium |access-date=2025-02-28 |publisher=National Center for Biotechnology Information (NCBI) taxonomy database |display-authors=et al.}}

| subdivision =

  • D. detoxificans

}}

Denitrobacterium is a genus of Actinomycetota with a single species, in the family Coriobacteriaceae. Originally isolated from the bovine rumen, Denitrobacterium are non-motile and non-spore forming.{{cite journal |vauthors=Anderson RC, Rasmussen MA, Jensen NS, Allison MJ |title=Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds |journal=Int J Syst Evol Microbiol |year=2000 |pages=633–8 |volume=50 Pt 2 |issue=2 |pmid=10758869 |doi=10.1099/00207713-50-2-633 |doi-access=free}} The only described species in this genus is Denitrobacterium detoxificans. The specific niche of this bacterium in the bovine rumen is theorized to be the detoxification/metabolism of nitrotoxins and miserotoxin.{{Cite journal |last1=Anderson |first1=R C |last2=Rasmussen |first2=M A |last3=Allison |first3=M J |date=October 1996 |title=Enrichment and isolation of a nitropropanol-metabolizing bacterium from the rumen |journal=Applied and Environmental Microbiology |language=en |volume=62 |issue=10 |pages=3885–3886 |doi=10.1128/aem.62.10.3885-3886.1996 |pmid=8837447 |pmc=168200 |bibcode=1996ApEnM..62.3885A |issn=0099-2240}}{{Cite journal |last1=Anderson |first1=Robin C. |last2=Rasmussen |first2=Mark A. |last3=Allison |first3=Milton J. |last4=DiSpirito |first4=Alan A. |date=1997-07-01 |title=Characteristics of a nitropropanol-metabolizing bacterium isolated from the rumen |url=http://www.nrcresearchpress.com/doi/10.1139/m97-088 |journal=Canadian Journal of Microbiology |language=en |volume=43 |issue=7 |pages=617–624 |doi=10.1139/m97-088 |pmid=9246740 |issn=0008-4166}}{{Cite journal |last1=Anderson |first1=Robin C. |last2=Rasmussen |first2=Mark A. |date=1998-05-01 |title=Use of a novel nitrotoxin-metabolizing bacterium to reduce ruminal methane production |url=https://www.sciencedirect.com/science/article/pii/S0960852497001843 |journal=Bioresource Technology |language=en |volume=64 |issue=2 |pages=89–95 |doi=10.1016/S0960-8524(97)00184-3 |issn=0960-8524}}

Characteristics of ''Denitrobacterium detoxificans''

The sole species currently described in the genus Denitrobacterium, D. detoxificans, is a Gram-positive, obligate anaerobe. In the study conducted by Anderson et al., all of the four strains (NPOH1, NPOH2, NPOH3, and MAJ1) are shown to possess high G+C content in their DNAs (60, 58, 56, and 60 mol%, respectively) and are closely related to one another (more than 99% sequence identity). Additionally, the closest intergeneric relative is Coriobacterium glomerans with 86% sequence identity, based on the 16S rRNA sequence comparison between the NPOH1 strain and sequences available in GenBank.

= Metabolism of nitrocompounds by ''D. detoxificans'' =

In the bovine rumen, Denitrobacterium detoxificans metabolizes the following substrates through oxidation:{{Cite journal |last1=Ochoa-García |first1=Pedro Antonio |last2=Anderson |first2=Robin C. |last3=Arévalos-Sánchez |first3=Martha María |last4=Rodríguez-Almeida |first4=Felipe Alonso |last5=Félix-Portillo |first5=Monserrath |last6=Muro-Reyes |first6=Alberto |last7=Božić |first7=Aleksandar K. |last8=Arzola-Álvarez |first8=Claudio |last9=Corral-Luna |first9=Agustín |date=2021-08-16 |title=Astragallus mollissimus plant extract: a strategy to reduce ruminal methanogenesis |url=https://doi.org/10.1007/s11250-021-02882-1 |journal=Tropical Animal Health and Production |language=en |volume=53 |issue=4 |pages=436 |doi=10.1007/s11250-021-02882-1 |pmid=34401959 |s2cid=237148677 |issn=1573-7438}}

The oxidation of these above compounds are coupled with the reduction of nitrocompounds such as:

There are speculations as to how these nitrocompounds are metabolized. The primary mechanism of 3NPA and 3NPOH metabolism is the reduction to amines, i.e. β-alanine and aminopropanol, respectively.{{Cite journal |last1=Anderson |first1=R C |last2=Rasmussen |first2=M A |last3=Allison |first3=M J |date=September 1993 |title=Metabolism of the plant toxins nitropropionic acid and nitropropanol by ruminal microorganisms |url=http://dx.doi.org/10.1128/aem.59.9.3056-3061.1993 |journal=Applied and Environmental Microbiology |volume=59 |issue=9 |pages=3056–3061 |doi=10.1128/aem.59.9.3056-3061.1993 |pmid=8215375 |pmc=182406 |bibcode=1993ApEnM..59.3056A |issn=0099-2240}} β-alanine is further metabolized by ruminal microorganisms, whereas aminopropanol seems to be a final product. It is also speculated that nitrite may be cleaved off from both 3NPA and 3NPOH as a minor metabolite, which is then further reduced to ammonia.{{Cite journal |last1=Majak |first1=W. |last2=Cheng |first2=K.-J. |date=1981-07-01 |title=Identification of rumen bacteria that anaerobically degrade aliphatic nitrotoxins |url=http://dx.doi.org/10.1139/m81-099 |journal=Canadian Journal of Microbiology |volume=27 |issue=7 |pages=646–650 |doi=10.1139/m81-099 |pmid=7197575 |issn=0008-4166}} 3NPA gets metabolized by ruminal microbes more rapidly than 3NPOH;{{Cite journal |last1=Gustine |first1=D. L. |last2=Moyer |first2=B. G. |last3=Wangsness |first3=P. J. |last4=Shenk |first4=J. S. |date=1977-06-01 |title=Ruminal Metabolism of 3-Nitropropanoyl-D-Glucopyranoses from Crownvetch |url=http://dx.doi.org/10.2527/jas1977.4461107x |journal=Journal of Animal Science |volume=44 |issue=6 |pages=1107–1111 |doi=10.2527/jas1977.4461107x |issn=0021-8812}}{{Cite journal |last1=MAJAK |first1=W. |last2=CLARK |first2=L. J. |title=Metabolism of Aliphatic Nitro Compounds in Bovine Rumen Fluid |date=1980-06-01 |journal=Canadian Journal of Animal Science |volume=60 |issue=2 |pages=319–325 |doi=10.4141/cjas80-041 |issn=0008-3984 |doi-access=free}} therefore, 3NPA is less toxic to ruminants grazing on leguminous plants containing the conjugates of these nitrocompounds than 3NPOH.

= Plants containing the nitrocompounds metabolized by ''D. detoxificans'' =

The above nitrocompounds are abundant in many forages in the forms of glycosides and glucose esters.{{Cite journal |last1=Anderson |first1=Robin C. |last2=Majak |first2=Walter |last3=Rassmussen |first3=Mark A. |last4=Callaway |first4=Todd R. |last5=Beier |first5=Ross C. |last6=Nisbet |first6=David J. |last7=Allison |first7=Milton J. |date=2005-03-01 |title=Toxicity and Metabolism of the Conjugates of 3-Nitropropanol and 3-Nitropropionic Acid in Forages Poisonous to Livestock |url=https://pubs.acs.org/doi/10.1021/jf040392j |journal=Journal of Agricultural and Food Chemistry |language=en |volume=53 |issue=6 |pages=2344–2350 |doi=10.1021/jf040392j |pmid=15769179 |issn=0021-8561}} Miserotoxin is the most common glycoside of 3NPOH as 3-nitro-1-propyl-β-D-glucopyranoside, first isolated from Astragalus oblongifolius.{{Cite journal |last1=Stermitz |first1=Frank R. |last2=Norris |first2=Frank A. |last3=Williams |first3=Miles Coburn |date=July 1969 |title=Miserotoxin, new naturally occurring nitro compound |url=http://dx.doi.org/10.1021/ja01044a078 |journal=Journal of the American Chemical Society |volume=91 |issue=16 |pages=4599–4600 |doi=10.1021/ja01044a078 |issn=0002-7863}} Other glycosides of 3NPOH include β-D-gentiobioside,{{Cite journal |last1=Majak |first1=Walter |last2=Benn |first2=Michael H. |date=1988 |title=3-Nitro-1-propyl-β-d-gentiobioside from Astragalus miser var. serotinus |url=http://dx.doi.org/10.1016/0031-9422(88)80279-6 |journal=Phytochemistry |volume=27 |issue=4 |pages=1089–1091 |doi=10.1016/0031-9422(88)80279-6 |bibcode=1988PChem..27.1089M |issn=0031-9422}} allolactoside,{{Cite journal |last1=Majak |first1=W. |last2=Benn |first2=M. H. |last3=Huang |first3=Y. Y. |date=September 1988 |title=A New Glycoside of 3-Nitropropanol from Astragalus miser var. serotinus |url=http://dx.doi.org/10.1021/np50059a032 |journal=Journal of Natural Products |volume=51 |issue=5 |pages=985–988 |doi=10.1021/np50059a032 |pmid=21401184 |issn=0163-3864}} laminaribioside,{{Cite journal |last1=Benn |first1=Michael H. |last2=Majak |first2=Walter |date=January 1989 |title=3-Nitro-1-propyl-β-d-laminaribioside from Astragalus miser var. serotinus |url=http://dx.doi.org/10.1016/s0031-9422(00)97986-x |journal=Phytochemistry |volume=28 |issue=9 |pages=2369–2371 |doi=10.1016/s0031-9422(00)97986-x |bibcode=1989PChem..28.2369B |issn=0031-9422}} and cellobioside{{Cite journal |last1=Long |first1=Melissa |last2=Benn |first2=Michael |last3=Majak |first3=Walter |last4=McDiarmid |first4=Ruth |date=January 1992 |title=3-nitropropyl glycosides of Astragalus miser var. serotinus |url=http://dx.doi.org/10.1016/0031-9422(91)83063-q |journal=Phytochemistry |volume=31 |issue=1 |pages=321–323 |doi=10.1016/0031-9422(91)83063-q |bibcode=1992PChem..31..321L |issn=0031-9422}} from Astragalus miser var. serotinus. Glucose esters of 3NPA are produced by species of the genera Coronilla{{Cite journal |last=Majak |first=W |date=1976 |title=Nitropropanylglucopyranoses in Coronilla varia |url=http://dx.doi.org/10.1016/s0031-9422(00)86835-1 |journal=Phytochemistry |volume=15 |issue=3 |pages=415–417 |doi=10.1016/s0031-9422(00)86835-1 |bibcode=1976PChem..15..415M |issn=0031-9422}}{{Cite journal |last1=Moyer |first1=Barton G. |last2=Pfeffer |first2=Philip E. |last3=Moniot |first3=Jerry L. |last4=Shamma |first4=Maurice |last5=Gustine |first5=David L. |date=January 1977 |title=Corollin, coronillin and coronarian: Three new 3-nitropropanoyl-d-glucopyranoses from Coronilla varia |url=http://dx.doi.org/10.1016/0031-9422(77)80068-x |journal=Phytochemistry |volume=16 |issue=3 |pages=375–377 |doi=10.1016/0031-9422(77)80068-x |bibcode=1977PChem..16..375M |issn=0031-9422}}{{Cite journal |last1=Majak |first1=Walter |last2=Benn |first2=Michael |date=1994 |title=Additional esters of 3-nitropropanoic acid and glucose from fruit of the New Zealand karaka tree, Corynocarpus laevigatus |url=http://dx.doi.org/10.1016/s0031-9422(00)90635-6 |journal=Phytochemistry |volume=35 |issue=4 |pages=901–903 |doi=10.1016/s0031-9422(00)90635-6 |bibcode=1994PChem..35..901M |issn=0031-9422}}, Astragalus{{Cite journal |last1=Stermitz |first1=F.R. |last2=Lowry |first2=W.T. |last3=Ubben |first3=E. |last4=Sharifi |first4=I. |date=January 1972 |title=1,6-Di-3-nitropropanoyl-β-d-glucopyranoside from Astragalus cibarius |url=http://dx.doi.org/10.1016/s0031-9422(00)89851-9 |journal=Phytochemistry |volume=11 |issue=12 |pages=3525–3527 |doi=10.1016/s0031-9422(00)89851-9 |bibcode=1972PChem..11.3525S |issn=0031-9422}}, Indigofera{{Cite journal |last1=Finnegan |first1=R.A. |last2=Stephani |first2=R.A. |date=February 1968 |title=Structure of Hiptagin as 1,2,4,6-tetra-O-(3-nitropropanoyl)-β-D-Glucopyranoside, its Identity with Endecaphyllin X, and the Synthesis of its Methyl Ether |url=http://dx.doi.org/10.1002/jps.2600570233 |journal=Journal of Pharmaceutical Sciences |volume=57 |issue=2 |pages=353–354 |doi=10.1002/jps.2600570233 |pmid=5641692 |issn=0022-3549}}{{Cite journal |last1=Benn |first1=Michael |last2=Mcewan |first2=Denise |last3=Pass |first3=Michael A. |last4=Majak |first4=Walter |date=July 1992 |title=Three nitropropanoyl esters of glucose from Indigofera linnaei |url=http://dx.doi.org/10.1016/0031-9422(92)83284-6 |journal=Phytochemistry |volume=31 |issue=7 |pages=2393–2395 |doi=10.1016/0031-9422(92)83284-6 |bibcode=1992PChem..31.2393B |issn=0031-9422}}{{Cite journal |last1=Garcez |first1=Walmir S. |last2=Garcez |first2=Fernanda R. |last3=Honda |first3=Neli K. |last4=da Silva |first4=Antonio J.R. |date=January 1989 |title=A nitropropanoyl-glucopyranoside from Indigofera suffruticosa |url=http://dx.doi.org/10.1016/0031-9422(89)80220-1 |journal=Phytochemistry |volume=28 |issue=4 |pages=1251–1252 |doi=10.1016/0031-9422(89)80220-1 |bibcode=1989PChem..28.1251G |issn=0031-9422}}, and Hiptage. 3NPA is also produced by Astragalus canadensis in the forms of oxotetrahydrofuranyl{{Cite journal |last=Benn |first=M |date=December 1995 |title=Aliphatic nitro-compounds in Astragalus canadensis |url=http://dx.doi.org/10.1016/0031-9422(95)00482-m |journal=Phytochemistry |volume=40 |issue=6 |pages=1629–1631 |doi=10.1016/0031-9422(95)00482-m |bibcode=1995PChem..40.1629B |issn=0031-9422}} and isoxazolinone esters.{{Cite journal |last1=Benn |first1=Michael H |last2=Majak |first2=Walter |last3=Aplin |first3=Robin |date=July 1997 |title=A nitropropanoyl isoxazolinone derivative in two species of Astragalus |url=http://dx.doi.org/10.1016/s0305-1978(97)00022-7 |journal=Biochemical Systematics and Ecology |volume=25 |issue=5 |pages=467–468 |doi=10.1016/s0305-1978(97)00022-7 |issn=0305-1978}}

History of ''Denitrobacterium''

= Isolation of strains NPOH1-3 and MAJ1 =

The D. detoxifican strain NPOH1 was first isolated and cultured in the 1996 study by Anderson et al., investigating the metabolism of nitrotoxins such as 3-nitro-1-propanol and 3-nitro-1-propionate. Strains NPOH2 and NPOH3 were isolated from a roll tube containing an agar medium with energy-depleted rumen fluid (at 40% v/v), sodium carbonate, resazurin, L-cysteine-HCl, lipoic acid, vitamins, minerals, and Amisoy (a partially purified soy protein product by Quest International, at 0.08% w/v), supplemented with 9 mM 3-nitro-1-propanol and inoculated with 2 x 10−4 mL of nonenriched ruminal fluid. The rumen contents containing NPOH1, NPOH2, and NPOH3 were obtained from two different cows (one with NPOH1 and another with NPOH2&3) at the National Animal Disease Center (NADC) in Ames, IA, USA. Strain MAJ1 was isolated from rumen contents of a cow on a milkvetch range harboring Astragalus miser var. serotinus in British Columbia, Canada.

= Classification of ''Denitrobacterium'' into Class ''Actinobacteria'' =

In the 2000 article, Anderson et al. proposed the assignment of the novel bacteria into the class Actinobacteria, subclass Coriobacteridae, order Coriobacteriales, family Coriobacteriaceae based on the high mole percent G+C content and 16S rRNA sequence. The genus Denitrobacterium was included in the family Coriobaceteriaceae by Zhi et al. in the 2009 publication{{Cite journal |last1=Zhi |first1=X.-Y. |last2=Li |first2=W.-J. |last3=Stackebrandt |first3=E. |date=2009-03-01 |title=An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa |journal=International Journal of Systematic and Evolutionary Microbiology |language=en |volume=59 |issue=3 |pages=589–608 |doi=10.1099/ijs.0.65780-0 |pmid=19244447 |issn=1466-5026 |doi-access=free}} on addendum to the class Actinobacteria.

See also

References

{{Portal bar|Biology}}

{{Bacteria classification}}

{{Taxonbar|from=Q5257858}}

Category:Coriobacteriaceae

Category:Monotypic bacteria genera