Detrended fluctuation analysis

{{Short description|Method to detect power-law scaling in time series}}

In stochastic processes, chaos theory and time series analysis, detrended fluctuation analysis (DFA) is a method for determining the statistical self-affinity of a signal. It is useful for analysing time series that appear to be long-memory processes (diverging correlation time, e.g. power-law decaying autocorrelation function) or 1/f noise.

The obtained exponent is similar to the Hurst exponent, except that DFA may also be applied to signals whose underlying statistics (such as mean and variance) or dynamics are non-stationary (changing with time). It is related to measures based upon spectral techniques such as autocorrelation and Fourier transform.

Peng et al. introduced DFA in 1994 in a paper that has been cited over 3,000 times as of 2022{{cite journal|last=Peng|first=C.K.|s2cid=3498343|title=Mosaic organization of DNA nucleotides|journal=Phys. Rev. E|year=1994|volume=49|issue=2|pages=1685–1689|doi=10.1103/physreve.49.1685|pmid=9961383|display-authors=etal|bibcode=1994PhRvE..49.1685P|doi-access=free}} and represents an extension of the (ordinary) fluctuation analysis (FA), which is affected by non-stationarities.

Systematic studies of the advantages and limitations of the DFA method were performed by PCh Ivanov et al. in a series of papers focusing on the effects of different types of nonstationarities in real-world signals: (1) types of trends;{{Cite journal |last1=Hu |first1=Kun |last2=Ivanov |first2=Plamen Ch. |last3=Chen |first3=Zhi |last4=Carpena |first4=Pedro |last5=Eugene Stanley |first5=H. |date=2001-06-26 |title=Effect of trends on detrended fluctuation analysis |url=https://journals.aps.org/pre/abstract/10.1103/PhysRevE.64.011114 |journal=Physical Review E |volume=64 |issue=1 |pages=011114 |doi=10.1103/PhysRevE.64.011114 |pmid=11461232|arxiv=physics/0103018 |bibcode=2001PhRvE..64a1114H }} (2) random outliers/spikes, noisy segments, signals composed of parts with different correlation;{{Cite journal |last1=Chen |first1=Zhi |last2=Ivanov |first2=Plamen Ch. |last3=Hu |first3=Kun |last4=Stanley |first4=H. Eugene |date=2002-04-08 |title=Effect of nonstationarities on detrended fluctuation analysis |url=https://journals.aps.org/pre/abstract/10.1103/PhysRevE.65.041107 |journal=Physical Review E |volume=65 |issue=4 |pages=041107 |doi=10.1103/PhysRevE.65.041107 |pmid=12005806|arxiv=physics/0111103 |bibcode=2002PhRvE..65d1107C }} (3) nonlinear filters;{{Cite journal |last1=Chen |first1=Zhi |last2=Hu |first2=Kun |last3=Carpena |first3=Pedro |last4=Bernaola-Galvan |first4=Pedro |last5=Stanley |first5=H. Eugene |last6=Ivanov |first6=Plamen Ch. |date=2005-01-12 |title=Effect of nonlinear filters on detrended fluctuation analysis |url=https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.011104 |journal=Physical Review E |volume=71 |issue=1 |pages=011104 |doi=10.1103/PhysRevE.71.011104 |pmid=15697577|arxiv=cond-mat/0406739 |bibcode=2005PhRvE..71a1104C }} (4) missing data;{{Cite journal |last1=Ma |first1=Qianli D. Y. |last2=Bartsch |first2=Ronny P. |last3=Bernaola-Galván |first3=Pedro |last4=Yoneyama |first4=Mitsuru |last5=Ivanov |first5=Plamen Ch. |date=2010-03-02 |title=Effect of extreme data loss on long-range correlated and anticorrelated signals quantified by detrended fluctuation analysis |journal=Physical Review E |volume=81 |issue=3 |pages=031101 |doi=10.1103/PhysRevE.81.031101 |pmc=3534784 |pmid=20365691|arxiv=1001.3641 |bibcode=2010PhRvE..81c1101M }} (5) signal coarse-graining procedures {{Cite journal |last1=Xu |first1=Yinlin |last2=Ma |first2=Qianli D. Y. |last3=Schmitt |first3=Daniel T. |last4=Bernaola-Galván |first4=Pedro |last5=Ivanov |first5=Plamen Ch. |date=2011-11-01 |title=Effects of coarse-graining on the scaling behavior of long-range correlated and anti-correlated signals |journal=Physica A: Statistical Mechanics and Its Applications |volume=390 |issue=23 |pages=4057–4072 |doi=10.1016/j.physa.2011.05.015 |issn=0378-4371 |pmc=4226277 |pmid=25392599|arxiv=1002.3834 |bibcode=2011PhyA..390.4057X }} and comparing DFA performance with moving average techniques {{Cite journal |last1=Xu |first1=Limei |last2=Ivanov |first2=Plamen Ch. |last3=Hu |first3=Kun |last4=Chen |first4=Zhi |last5=Carbone |first5=Anna |last6=Stanley |first6=H. Eugene |date=2005-05-06 |title=Quantifying signals with power-law correlations: A comparative study of detrended fluctuation analysis and detrended moving average techniques |url=https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.051101 |journal=Physical Review E |volume=71 |issue=5 |pages=051101 |doi=10.1103/PhysRevE.71.051101 |pmid=16089515|arxiv=cond-mat/0408047 |bibcode=2005PhRvE..71e1101X }} (cumulative citations > 4,000).  [https://physionet.org/content/tns/1.0.0/ Datasets] generated to test DFA are available on PhysioNet.{{Cite journal |last1=Goldberger |first1=Ary L. |last2=Amaral |first2=Luis A. N. |last3=Glass |first3=Leon |last4=Hausdorff |first4=Jeffrey M. |last5=Ivanov |first5=Plamen Ch. |last6=Mark |first6=Roger G. |last7=Mietus |first7=Joseph E. |last8=Moody |first8=George B. |last9=Peng |first9=Chung-Kang |last10=Stanley |first10=H. Eugene |date=2000-06-13 |title=PhysioBank, PhysioToolkit, and PhysioNet |url=https://www.ahajournals.org/doi/10.1161/01.CIR.101.23.e215 |journal=Circulation |volume=101 |issue=23 |pages=e215–e220 |doi=10.1161/01.CIR.101.23.e215 |pmid=10851218}}

Definition

= Algorithm =

Given: a time series x_1, x_2, ..., x_N.

Compute its average value \langle x\rangle = \frac 1N \sum_{t=1}^N x_t.

Sum it into a process X_t=\sum_{i=1}^t (x_i-\langle x\rangle). This is the cumulative sum, or profile, of the original time series. For example, the profile of an i.i.d. white noise is a standard random walk.

Select a set T = \{n_1, ..., n_k\} of integers, such that n_1 < n_2 < \cdots < n_k, the smallest n_1 \approx 4, the largest n_k \approx N/4, and the sequence is roughly distributed evenly in log-scale: \log(n_2) - \log(n_1) \approx \log(n_3) - \log(n_2) \approx \cdots. In other words, it is approximately a geometric progression.{{Cite journal |last1=Hardstone |first1=Richard |last2=Poil |first2=Simon-Shlomo |last3=Schiavone |first3=Giuseppina |last4=Jansen |first4=Rick |last5=Nikulin |first5=Vadim |last6=Mansvelder |first6=Huibert |last7=Linkenkaer-Hansen |first7=Klaus |date=2012 |title=Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations |journal=Frontiers in Physiology |volume=3 |page=450 |doi=10.3389/fphys.2012.00450 |pmid=23226132 |pmc=3510427 |issn=1664-042X |doi-access=free }}

For each n \in T, divide the sequence X_t into consecutive segments of length n. Within each segment, compute the least squares straight-line fit (the local trend). Let Y_{1,n}, Y_{2,n}, ..., Y_{N,n} be the resulting piecewise-linear fit.

Compute the root-mean-square deviation from the local trend (local fluctuation):F( n, i) = \sqrt{\frac{1}{n}\sum_{t = in+1}^{in+n} \left( X_t - Y_{t, n} \right)^2}.And their root-mean-square is the total fluctuation:

:F( n ) = \sqrt{\frac{1}{N/n}\sum_{i = 1}^{N/n} F(n, i)^2}.

(If N is not divisible by n, then one can either discard the remainder of the sequence, or repeat the procedure on the reversed sequence, then take their root-mean-square.{{Cite journal |last1=Zhou |first1=Yu |last2=Leung |first2=Yee |date=2010-06-21 |title=Multifractal temporally weighted detrended fluctuation analysis and its application in the analysis of scaling behavior in temperature series |url=https://iopscience.iop.org/article/10.1088/1742-5468/2010/06/P06021 |journal=Journal of Statistical Mechanics: Theory and Experiment |volume=2010 |issue=6 |pages=P06021 |doi=10.1088/1742-5468/2010/06/P06021 |bibcode=2010JSMTE..06..021Z |s2cid=119901219 |issn=1742-5468}})

Make the log-log plot \log n - \log F(n).{{cite journal|last=Peng|first=C.K.|s2cid=722880|title=Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series|journal=Chaos|year=1994|volume=49|issue=1|pages=82–87|doi=10.1063/1.166141|display-authors=etal|pmid=11538314|bibcode=1995Chaos...5...82P}}{{cite journal|last1=Bryce|first1=R.M.|last2=Sprague|first2=K.B.|title=Revisiting detrended fluctuation analysis|journal=Sci. Rep.|year=2012|volume=2|page=315|doi=10.1038/srep00315|pmc=3303145|pmid=22419991|bibcode=2012NatSR...2..315B}}

= Interpretation =

A straight line of slope \alpha on the log-log plot indicates a statistical self-affinity of form F(n) \propto n^{\alpha}. Since F(n) monotonically increases with n, we always have \alpha > 0.

The scaling exponent \alpha is a generalization of the Hurst exponent, with the precise value giving information about the series self-correlations:

  • \alpha<1/2: anti-correlated
  • \alpha \simeq 1/2: uncorrelated, white noise
  • \alpha>1/2: correlated
  • \alpha\simeq 1: 1/f-noise, pink noise
  • \alpha>1: non-stationary, unbounded
  • \alpha\simeq 3/2: Brownian noise

Because the expected displacement in an uncorrelated random walk of length N grows like \sqrt{N}, an exponent of \tfrac{1}{2} would correspond to uncorrelated white noise. When the exponent is between 0 and 1, the result is fractional Gaussian noise.

= Pitfalls in interpretation =

Though the DFA algorithm always produces a positive number \alpha for any time series, it does not necessarily imply that the time series is self-similar. Self-similarity requires the log-log graph to be sufficiently linear over a wide range of n. Furthermore, a combination of techniques including maximum likelihood estimation (MLE), rather than least-squares has been shown to better approximate the scaling, or power-law, exponent.{{Cite journal |last1=Clauset |first1=Aaron |last2=Rohilla Shalizi |first2=Cosma |last3=Newman |first3=M. E. J. |year=2009 |title=Power-Law Distributions in Empirical Data |journal=SIAM Review |volume=51 |issue=4 |pages=661–703 |arxiv=0706.1062 |bibcode=2009SIAMR..51..661C |doi=10.1137/070710111 |s2cid=9155618}}

Also, there are many scaling exponent-like quantities that can be measured for a self-similar time series, including the divider dimension and Hurst exponent. Therefore, the DFA scaling exponent \alpha is not a fractal dimension, and does not have certain desirable properties that the Hausdorff dimension has, though in certain special cases it is related to the box-counting dimension for the graph of a time series.

Generalizations

= Generalization to different moments (multifractal DFA) =

DFA can be generalized by computing F_q( n ) = \left(\frac{1}{N/n}\sum_{i = 1}^{N/n} F(n, i)^q\right)^{1/q} then making the log-log plot of \log n - \log F_q(n), If there is a strong linearity in the plot of \log n - \log F_q(n), then that slope is \alpha(q).{{cite journal |last=H.E. Stanley |first=J.W. Kantelhardt |author2=S.A. Zschiegner |author3=E. Koscielny-Bunde |author4=S. Havlin |author5=A. Bunde |year=2002 |title=Multifractal detrended fluctuation analysis of nonstationary time series |url=http://havlin.biu.ac.il/Publications.php?keyword=Multifractal+detrended+fluctuation+analysis+of+nonstationary+time+series++&year=*&match=all |journal=Physica A |volume=316 |issue=1–4 |pages=87–114 |arxiv=physics/0202070 |bibcode=2002PhyA..316...87K |doi=10.1016/s0378-4371(02)01383-3 |s2cid=18417413 |access-date=2011-07-20 |archive-date=2018-08-28 |archive-url=https://web.archive.org/web/20180828134644/http://havlin.biu.ac.il/Publications.php?keyword=Multifractal+detrended+fluctuation+analysis+of+nonstationary+time+series++&year=*&match=all |url-status=dead }} DFA is the special case where q=2.

Multifractal systems scale as a function F_q(n) \propto n^{\alpha(q)}. Essentially, the scaling exponents need not be independent of the scale of the system. In particular, DFA measures the scaling-behavior of the second moment-fluctuations.

Kantelhardt et al. intended this scaling exponent as a generalization of the classical Hurst exponent. The classical Hurst exponent corresponds to H=\alpha(2) for stationary cases, and H=\alpha(2)-1 for nonstationary cases.{{cite journal |last1=Movahed |first1=M. Sadegh |display-authors=et al |date=2006 |title=Multifractal detrended fluctuation analysis of sunspot time series |journal=Journal of Statistical Mechanics: Theory and Experiment |volume=02}}

Applications

The DFA method has been applied to many systems, e.g. DNA sequences;{{cite journal|last=Buldyrev|title=Long-Range Correlation-Properties of Coding And Noncoding Dna-Sequences- Genbank Analysis|journal=Phys. Rev. E|year=1995|volume=51|issue=5|pages=5084–5091|doi=10.1103/physreve.51.5084|pmid=9963221|display-authors=etal|bibcode=1995PhRvE..51.5084B}}{{cite journal|last=Bunde A|first=Havlin S|title=Fractals and Disordered Systems, Springer, Berlin, Heidelberg, New York|year=1996}} heartbeat dynamics in sleep and wake,{{Cite journal |last1=Ivanov |first1=P. Ch |last2=Bunde |first2=A |last3=Amaral |first3=L. A. N |last4=Havlin |first4=S |last5=Fritsch-Yelle |first5=J |author5-link=Janice Meck|last6=Baevsky |first6=R. M |last7=Stanley |first7=H. E |last8=Goldberger |first8=A. L |date=1999-12-01 |title=Sleep-wake differences in scaling behavior of the human heartbeat: Analysis of terrestrial and long-term space flight data |url=https://iopscience.iop.org/article/10.1209/epl/i1999-00525-0 |journal=Europhysics Letters |volume=48 |issue=5 |pages=594–600 |doi=10.1209/epl/i1999-00525-0 |issn= |pmid=11542917|arxiv=cond-mat/9911073 |bibcode=1999EL.....48..594I }}  sleep stages,{{cite journal |last=Bunde A. |display-authors=etal |year=2000 |title=Correlated and uncorrelated regions in heart-rate fluctuations during sleep |journal=Phys. Rev. E |volume=85 |issue=17 |pages=3736–3739 |bibcode=2000PhRvL..85.3736B |doi=10.1103/physrevlett.85.3736 |pmid=11030994 |s2cid=21568275}}{{Cite journal |last1=Kantelhardt |first1=Jan W. |last2=Ashkenazy |first2=Yosef |last3=Ivanov |first3=Plamen Ch. |last4=Bunde |first4=Armin |last5=Havlin |first5=Shlomo |last6=Penzel |first6=Thomas |last7=Peter |first7=Jörg-Hermann |last8=Stanley |first8=H. Eugene |date=2002-05-08 |title=Characterization of sleep stages by correlations in the magnitude and sign of heartbeat increments |url=https://journals.aps.org/pre/abstract/10.1103/PhysRevE.65.051908 |journal=Physical Review E |volume=65 |issue=5 |pages=051908 |doi=10.1103/PhysRevE.65.051908 |pmid=12059594|arxiv=cond-mat/0012390 |bibcode=2002PhRvE..65e1908K }} rest and exercise,{{Cite journal |last1=Karasik |first1=Roman |last2=Sapir |first2=Nir |last3=Ashkenazy |first3=Yosef |last4=Ivanov |first4=Plamen Ch. |last5=Dvir |first5=Itzhak |last6=Lavie |first6=Peretz |last7=Havlin |first7=Shlomo |date=2002-12-12 |title=Correlation differences in heartbeat fluctuations during rest and exercise |url=https://journals.aps.org/pre/abstract/10.1103/PhysRevE.66.062902 |journal=Physical Review E |volume=66 |issue=6 |pages=062902 |doi=10.1103/PhysRevE.66.062902 |pmid=12513330|arxiv=cond-mat/0110554 |bibcode=2002PhRvE..66f2902K }}{{Cite journal |last1=Rogers |first1=Bruce |last2=Giles |first2=David |last3=Draper |first3=Nick |last4=Hoos |first4=Olaf |last5=Gronwald |first5=Thomas |date=2021-01-15 |title=A New Detection Method Defining the Aerobic Threshold for Endurance Exercise and Training Prescription Based on Fractal Correlation Properties of Heart Rate Variability |journal=Frontiers in Physiology |language=English |volume=11 |doi=10.3389/fphys.2020.596567 |doi-access=free |pmid=33519504 |issn=1664-042X}} and across circadian phases;{{Cite journal |last1=Hu |first1=Kun |last2=Ivanov |first2=Plamen Ch. |last3=Hilton |first3=Michael F. |last4=Chen |first4=Zhi |last5=Ayers |first5=R. Timothy |last6=Stanley |first6=H. Eugene |last7=Shea |first7=Steven A. |date=2004-12-28 |title=Endogenous circadian rhythm in an index of cardiac vulnerability independent of changes in behavior |journal=Proceedings of the National Academy of Sciences |volume=101 |issue=52 |pages=18223–18227 |doi=10.1073/pnas.0408243101 |doi-access=free |pmc=539796 |pmid=15611476|bibcode=2004PNAS..10118223H }}{{Cite journal |last1=Ivanov |first1=Plamen Ch. |last2=Hu |first2=Kun |last3=Hilton |first3=Michael F. |last4=Shea |first4=Steven A. |last5=Stanley |first5=H. Eugene |date=2007-12-26 |title=Endogenous circadian rhythm in human motor activity uncoupled from circadian influences on cardiac dynamics |journal=Proceedings of the National Academy of Sciences |volume=104 |issue=52 |pages=20702–20707 |doi=10.1073/pnas.0709957104 |doi-access=free |pmc=2410066 |pmid=18093917|bibcode=2007PNAS..10420702I }} locomotor gate and wrist dynamics,{{Cite journal |last1=Hausdorff |first1=Jeffrey M. |last2=Ashkenazy |first2=Yosef |last3=Peng |first3=Chang-K. |last4=Ivanov |first4=Plamen Ch. |last5=Stanley |first5=H. Eugene |last6=Goldberger |first6=Ary L. |date=2001-12-15 |title=When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations |url=https://www.sciencedirect.com/science/article/abs/pii/S0378437101004605 |journal=Physica A: Statistical Mechanics and Its Applications |series=Proc. Int. Workshop on Frontiers in the Physics of Complex Systems |volume=302 |issue=1 |pages=138–147 |doi=10.1016/S0378-4371(01)00460-5 |issn=0378-4371 |pmid=12033228|bibcode=2001PhyA..302..138H }}{{Cite journal |last1=Ashkenazy |first1=Yosef |last2=M. Hausdorff |first2=Jeffrey |last3=Ch. Ivanov |first3=Plamen |last4=Eugene Stanley |first4=H |date=2002-12-15 |title=A stochastic model of human gait dynamics |url=https://www.sciencedirect.com/science/article/abs/pii/S037843710201453X |journal=Physica A: Statistical Mechanics and Its Applications |volume=316 |issue=1 |pages=662–670 |doi=10.1016/S0378-4371(02)01453-X |arxiv=cond-mat/0103119 |bibcode=2002PhyA..316..662A |issn=0378-4371}}{{Cite journal |last1=Hu |first1=Kun |last2=Ivanov |first2=Plamen Ch. |last3=Chen |first3=Zhi |last4=Hilton |first4=Michael F. |last5=Stanley |first5=H. Eugene |last6=Shea |first6=Steven A. |date=2004-06-01 |title=Non-random fluctuations and multi-scale dynamics regulation of human activity |journal=Physica A: Statistical Mechanics and Its Applications |volume=337 |issue=1 |pages=307–318 |doi=10.1016/j.physa.2004.01.042 |issn=0378-4371 |pmc=2749944 |pmid=15759365|arxiv=physics/0308011 |bibcode=2004PhyA..337..307H }}{{Cite journal |last1=Ivanov |first1=Plamen Ch. |last2=Ma |first2=Qianli D. Y. |last3=Bartsch |first3=Ronny P. |last4=Hausdorff |first4=Jeffrey M. |last5=Nunes Amaral |first5=Luís A. |last6=Schulte-Frohlinde |first6=Verena |last7=Stanley |first7=H. Eugene |last8=Yoneyama |first8=Mitsuru |date=2009-04-21 |title=Levels of complexity in scale-invariant neural signals |journal=Physical Review E |volume=79 |issue=4 |pages=041920 |doi=10.1103/PhysRevE.79.041920 |pmc=6653582 |pmid=19518269|bibcode=2009PhRvE..79d1920I }} neuronal oscillations,{{cite journal|last=Hardstone|first=Richard|author2=Poil, Simon-Shlomo |author3=Schiavone, Giuseppina |author4=Jansen, Rick |author5=Nikulin, Vadim V. |author6=Mansvelder, Huibert D. |author7= Linkenkaer-Hansen, Klaus |title=Detrended Fluctuation Analysis: A Scale-Free View on Neuronal Oscillations|journal=Frontiers in Physiology|date=1 January 2012|volume=3|pages=450|doi=10.3389/fphys.2012.00450|pmid=23226132|pmc=3510427|doi-access=free }} speech pathology detection,{{cite book |chapter-url=http://www.robots.ox.ac.uk/~sjrob/Pubs/NonlinearBiophysicalVoiceDisorderDetection.pdf |doi=10.1109/ICASSP.2006.1660534|chapter=Nonlinear, Biophysically-Informed Speech Pathology Detection|title=2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings|volume=2|pages=II-1080-II-1083|year=2006|last1=Little|first1=M.|last2=McSharry|first2=P.|last3=Moroz|first3=I.|author3-link= Irene Moroz |last4=Roberts|first4=S.|isbn=1-4244-0469-X|s2cid=11068261 }} and animal behavior pattern analysis.{{Cite journal |last1=Bogachev |first1=Mikhail I. |last2=Lyanova |first2=Asya I. |last3=Sinitca |first3=Aleksandr M. |last4=Pyko |first4=Svetlana A. |last5=Pyko |first5=Nikita S. |last6=Kuzmenko |first6=Alexander V. |last7=Romanov |first7=Sergey A. |last8=Brikova |first8=Olga I. |last9=Tsygankova |first9=Margarita |last10=Ivkin |first10=Dmitry Y. |last11=Okovityi |first11=Sergey V. |last12=Prikhodko |first12=Veronika A. |last13=Kaplun |first13=Dmitrii I. |last14=Sysoev |first14=Yuri I. |last15=Kayumov |first15=Airat R. |date=March 2023 |title=Understanding the complex interplay of persistent and antipersistent regimes in animal movement trajectories as a prominent characteristic of their behavioral pattern profiles: Towards an automated and robust model based quantification of anxiety test data |url=https://linkinghub.elsevier.com/retrieve/pii/S1746809422008631 |journal=Biomedical Signal Processing and Control |language=en |volume=81 |pages=104409 |doi=10.1016/j.bspc.2022.104409|s2cid=254206934 }}{{Cite journal |last1=Hu |first1=K. |last2=Scheer |first2=F. A. J. L. |last3=Ivanov |first3=P. Ch. |last4=Buijs |first4=R. M. |last5=Shea |first5=S. A. |date=2007-11-09 |title=The suprachiasmatic nucleus functions beyond circadian rhythm generation |journal=Neuroscience |volume=149 |issue=3 |pages=508–517 |doi=10.1016/j.neuroscience.2007.03.058 |issn=0306-4522 |pmc=2759975 |pmid=17920204}}

Relations to other methods, for specific types of signal

= For signals with power-law-decaying autocorrelation =

In the case of power-law decaying auto-correlations, the correlation function decays with an exponent \gamma:

C(L)\sim L^{-\gamma}\!\ .

In addition the power spectrum decays as P(f)\sim f^{-\beta}\!\ .

The three exponents are related by:

  • \gamma=2-2\alpha
  • \beta=2\alpha-1 and
  • \gamma=1-\beta.

The relations can be derived using the Wiener–Khinchin theorem. The relation of DFA to the power spectrum method has been well studied.{{cite journal|last=Heneghan|s2cid=10791480|title=Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes|journal=Phys. Rev. E|year=2000|volume=62 | issue = 5|pages=6103–6110|doi=10.1103/physreve.62.6103|pmid=11101940|display-authors=etal|bibcode=2000PhRvE..62.6103H}}

Thus, \alpha is tied to the slope of the power spectrum \beta and is used to describe the color of noise by this relationship: \alpha = (\beta+1)/2.

= For fractional Gaussian noise =

For fractional Gaussian noise (FGN), we have \beta \in [-1,1] , and thus \alpha \in [0,1], and \beta = 2H-1, where H is the Hurst exponent. \alpha for FGN is equal to H.{{cite journal |last1=Taqqu |first1=Murad S. |display-authors=et al |title=Estimators for long-range dependence: an empirical study. |journal=Fractals |date=1995 |volume=3 |issue=4 |pages=785–798|doi=10.1142/S0218348X95000692 }}

= For fractional Brownian motion =

For fractional Brownian motion (FBM), we have \beta \in [1,3] , and thus \alpha \in [1,2], and \beta = 2H+1, where H is the Hurst exponent. \alpha for FBM is equal to H+1. In this context, FBM is the cumulative sum or the integral of FGN, thus, the exponents of their

power spectra differ by 2.

See also

  • {{annotated link|Multifractal system}}
  • {{annotated link|Self-organized criticality}}
  • {{annotated link|Self-affinity}}
  • {{annotated link|Time series analysis}}
  • {{annotated link|Hurst exponent}}

References

{{reflist}}