Dichlorotris(triphenylphosphine)ruthenium(II)
{{Chembox
|Watchedfields = changed
|verifiedrevid = 440893139
|Name = Dichlorotris(triphenylphosphine){{SHY}}ruthenium(II)
|ImageFile1 = RuCl2P3Ibers.png
|ImageSize1 = 180px
|ImageName1 = Dichlorotris(triphenylphosphine)ruthenium(II)
|ImageFile2 = Dichlorotris(triphenylphosphine)ruthenium(II)-from-xtal-3D-bs-17.png
|IUPACName = Dichlorotris(triphenylphosphine)ruthenium(II)
|OtherNames = Ruthenium tris(triphenylphosphine) dichloride; Tris(triphenylphosphine)dichlororuthenium; Tris(triphenylphosphine)ruthenium dichloride;Tris(triphenylphosphine)ruthenium(II) dichloride
|Section1 = {{Chembox Identifiers
|ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
|ChemSpiderID = 76650
|PubChem = 11007548
|InChI = 1/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2
|SMILES = [Ru+2].[Cl-].[Cl-].c3c(P(c1ccccc1)c2ccccc2)cccc3.c1ccccc1P(c2ccccc2)c3ccccc3.c1ccccc1P(c2ccccc2)c3ccccc3
|InChIKey = WIWBLJMBLGWSIN-NUQVWONBAX
|StdInChI_Ref = {{stdinchicite|correct|chemspider}}
|StdInChI = 1S/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2
|StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
|StdInChIKey = WIWBLJMBLGWSIN-UHFFFAOYSA-L
|CASNo = 15529-49-4
|CASNo_Ref = {{cascite|correct|CAS}}
|EINECS = 239-569-7
}}
|Section2 = {{Chembox Properties
|Formula = C54H45Cl2P3Ru
|MolarMass = 958.83 g/mol
|Appearance = Black Crystals or Red-Brown
|Density = 1.43 g cm−3
|MeltingPtK = 406
}}
|Section3 = {{Chembox Structure
|CrystalStruct = Monoclinic
|LattConst_a = 18.01 Å
|LattConst_b = 20.22 Å
|LattConst_c = 12.36 Å
|LattConst_beta = 90.5
|SpaceGroup = C2h5-P21/c
|Coordination = Octahedral
}}
|Section4 ={{Chembox Hazards
|GHSPictograms = {{GHS07}}
|GHSSignalWord = Warning
|HPhrases = {{H-phrases|302|312|332}}
|PPhrases = {{P-phrases|261|264|270|271|280|301+312|302+352|304+312|304+340|312|322|330|363|501}}
}}
}}
Dichlorotris(triphenylphosphine)ruthenium(II) is a coordination complex of ruthenium. It is a chocolate brown solid that is soluble in organic solvents such as benzene. The compound is used as a precursor to other complexes including those used in homogeneous catalysis.
Synthesis and basic properties
RuCl2(PPh3)3 is the product of the reaction of ruthenium trichloride trihydrate with a methanolic solution of triphenylphosphine.Stephenson, T. A.; Wilkinson, G. "New Complexes of Ruthenium (II) and (III) with Triphenylphosphine, Triphenylarsine, Trichlorostannate, Pyridine, and other Ligands", J. Inorg. Nucl. Chem., 1966, 28, 945-956. {{doi|10.1016/0022-1902(66)80191-4}}P. S. Hallman, T. A. Stephenson, G. Wilkinson "Tetrakis(Triphenylphosphine)Dichloro-Ruthenium(II) and Tris(Triphenylphosphine)-Dichlororuthenium(II)" Inorganic Syntheses, 1970 volume 12 {{doi|10.1002/9780470132432.ch40}}
:2 RuCl3(H2O)3 + 7 PPh3 → 2 RuCl2(PPh3)3 + 2 HCl + 5 H2O + OPPh3
The coordination sphere of RuCl2(PPh3)3 can be viewed as either five-coordinate or octahedral. One coordination site is occupied by one of the hydrogen atoms of a phenyl group.{{cite book|doi=10.1002/0470862106.ia208|chapter=Ruthenium: Inorganic & Coordination Chemistry Based in part on the article Ruthenium: Inorganic & Coordination Chemistry by Bruno Chaudret & Sylviane Sabo-Etienne which appeared in the Encyclopedia of Inorganic Chemistry, First Edition|title=Encyclopedia of Inorganic Chemistry|year=2006|last1=Sabo-Etienne|first1=Sylviane|last2=Grellier|first2=Mary|isbn=0470860782}} This Ru---H agostic interaction is long (2.59 Å) and weak. The low symmetry of the compound is reflected by the differing lengths of the Ru-P bonds: 2.374, 2.412, and 2.230 Å.{{cite journal|doi = 10.1021/ic50028a002|title = A Five-Coordinated d6 Complex: Structure of Dichlorotris(triphenylphosphine)ruthenium (II)|year = 1965|last1 = La Placa|first1 = Sam J.|last2 = Ibers|first2 = James A.|journal = Inorganic Chemistry|volume = 4|issue = 6|pages = 778–783}} The Ru-Cl bond lengths are both 2.387 Å.
Reactions
In the presence of excess of triphenylphosphine, RuCl2(PPh3)3 binds a fourth phosphine to give black RuCl2(PPh3)4. The triphenylphosphine ligands in both the tris(phosphine) and tetrakis(phosphine) complexes are readily substituted by other ligands. The tetrakis(phosphine) complex is a precursor to the Grubbs catalysts.{{cite journal|doi=10.1021/cr9002424|title=Ruthenium-Based Heterocyclic Carbene-Coordinated Olefin Metathesis Catalysts|year=2010|last1=Vougioukalakis|first1=Georgios C.|last2=Grubbs|first2=Robert H.|journal=Chemical Reviews|volume=110|issue=3|pages=1746–1787|pmid=20000700}}
Dichlorotris(triphenylphosphine)ruthenium(II) reacts with hydrogen in the presence of base to give the purple-colored monohydride HRuCl(PPh3)3.{{cite book|chapter=Chlorohydridotris(triphenylphosphine)ruthenium(II)|first1=R. A.|last1=Schunn|first2=E. R.|last2=Wonchoba|title=Inorganic Syntheses|page=131|doi=10.1002/9780470132449.ch26|volume=13|year=1972|isbn=9780470132449}}
:RuCl2(PPh3)3 + H2 + NEt3 → HRuCl(PPh3)3 + [HNEt3]Cl
Dichlorotris(triphenylphosphine)ruthenium(II) reacts with carbon monoxide to produce the all trans isomer of dichloro(dicarbonyl)bis(triphenylphosphine)ruthenium(II).
:RuCl2(PPh3)3 + 2 CO → trans,trans,trans-RuCl2(CO)2(PPh3)2 + PPh3
This kinetic product isomerizes to the cis adduct during recrystallization. trans-RuCl2(dppe)2 forms upon treating RuCl2(PPh3)3 with dppe.
:RuCl2(PPh3)3 + 2 dppe → RuCl2(dppe)2 + 3 PPh3
RuCl2(PPh3)3 catalyzes the decomposition of formic acid into carbon dioxide and hydrogen gas in the presence of an amine.{{cite journal| doi=10.1002/anie.200705972| title=Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H2/O2Fuel Cells| year=2008| last1=Loges| first1=Björn| last2=Boddien| first2=Albert| last3=Junge| first3=Henrik| last4=Beller| first4=Matthias| journal=Angewandte Chemie International Edition| volume=47| issue=21| pages=3962–3965| pmid=18457345}} Since carbon dioxide can be trapped and hydrogenated on an industrial scale, formic acid represents a potential storage and transportation medium.
Use in organic synthesis
RuCl2(PPh3)3 facilitates oxidations, reductions, cross-couplings, cyclizations, and isomerization. It is used in the Kharasch addition of chlorocarbons to alkenes.Plummer, J. S.; Shun-Ichi, M.; Changjia, Z. "Dichlorotris(triphenylphosphine)ruthenium(II)", e-EROS Encyclopedia of Reagents for Organic Synthesis, 2010, John Wiley {{doi|10.1002/047084289X.rd137.pub2}}
Dichlorotris(triphenylphosphine)ruthenium(II) serves as a precatalyst for the hydrogenation of alkenes, nitro compounds, ketones, carboxylic acids, and imines. On the other hand, it catalyzes the oxidation of alkanes to tertiary alcohols, amides to t-butyldioxyamides, and tertiary amines to α-(t-butyldioxyamides) using tert-butyl hydroperoxide. Using other peroxides, oxygen, and acetone, the catalyst can oxidize alcohols to aldehydes or ketones. Using dichlorotris(triphenylphosphine)ruthenium(II) the N-alkylation of amines with alcohols is also possible (see "borrowing hydrogen").
RuCl2(PPh3)3 efficiently catalyzes carbon-carbon bond formation from cross couplings of alcohols through C-H activation of sp3 carbon atoms in the presence of a Lewis acid.{{cite journal|doi=10.1002/chem.200801317|title=Cross-Coupling Reaction between Alcohols through sp3 C−H Activation Catalyzed by a Ruthenium/Lewis Acid System|year=2008|last1=Zhang|first1=Shu-Yu|last2=Tu|first2=Yong-Qiang|last3=Fan|first3=Chun-An|last4=Jiang|first4=Yi-Jun|last5=Shi|first5=Lei|last6=Cao|first6=Ke|last7=Zhang|first7=En|journal=Chemistry - A European Journal|volume=14|issue=33|pages=10201–10205|pmid=18844197}}