Dickman function

{{Short description|Mathematical function}}

Image:Mplwp Dickman function log.svg.]]

In analytic number theory, the Dickman function or Dickman–de Bruijn function ρ is a special function used to estimate the proportion of smooth numbers up to a given bound.

It was first studied by actuary Karl Dickman, who defined it in his only mathematical publication,{{cite journal |first=K. |last=Dickman |title=On the frequency of numbers containing prime factors of a certain relative magnitude |journal=Arkiv för Matematik, Astronomi och Fysik |volume=22A |issue=10 |year=1930 |pages=1–14 |bibcode=1930ArMAF..22A..10D }} which is not easily available,{{Cite web |title=nt.number theory - Reference request: Dickman, On the frequency of numbers containing prime factors |author=Various |website=MathOverflow |date=2012–2018 |url= https://mathoverflow.net/questions/89362/reference-request-dickman-on-the-frequency-of-numbers-containing-prime-factors}} Discussion: an unsuccessful search for a source of Dickman's paper, and suggestions on several others on the topic. and later studied by the Dutch mathematician Nicolaas Govert de Bruijn.{{cite journal |first=N. G. |last=de Bruijn |url=http://alexandria.tue.nl/repository/freearticles/597499.pdf |title=On the number of positive integers ≤ x and free of prime factors > y |journal=Indagationes Mathematicae |volume=13 |year=1951 |pages=50–60 }}{{cite journal |first=N. G. |last=de Bruijn |url=http://alexandria.tue.nl/repository/freearticles/597534.pdf |title=On the number of positive integers ≤ x and free of prime factors > y, II |journal=Indagationes Mathematicae |volume=28 |year=1966 |pages=239–247 }}

Definition

The Dickman–de Bruijn function \rho(u) is a continuous function that satisfies the delay differential equation

:u\rho'(u) + \rho(u-1) = 0\,

with initial conditions \rho(u) = 1 for 0 ≤ u ≤ 1.

Properties

Dickman proved that, when a is fixed, we have

:\Psi(x, x^{1/a})\sim x\rho(a)\,

where \Psi(x,y) is the number of y-smooth (or y-friable) integers below x.

Ramaswami later gave a rigorous proof that for fixed a, \Psi(x,x^{1/a}) was asymptotic to x \rho(a), with the error bound

:\Psi(x,x^{1/a})=x\rho(a)+O(x/\log x)

in big O notation.{{cite journal |first=V. |last=Ramaswami |url=https://www.ams.org/bull/1949-55-12/S0002-9904-1949-09337-0/S0002-9904-1949-09337-0.pdf |title=On the number of positive integers less than x and free of prime divisors greater than xc |journal=Bulletin of the American Mathematical Society |volume=55 |issue=12 |year=1949 |pages=1122–1127 |doi= 10.1090/s0002-9904-1949-09337-0 | mr=0031958|doi-access=free }}

Applications

Image:Dickman_prob_factor_size.svg

The main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size. This can be used to optimize various number-theoretical algorithms such as P–1 factoring and can be useful of its own right.

It can be shown that{{cite journal |first1=A. |last1=Hildebrand |first2=G. |last2=Tenenbaum |url=http://archive.numdam.org/article/JTNB_1993__5_2_411_0.pdf |title=Integers without large prime factors |journal=Journal de théorie des nombres de Bordeaux |volume=5 |issue=2 |year=1993 |pages=411–484 |doi=10.5802/jtnb.101|doi-access=free }}

:\Psi(x,y)=xu^{O(-u)}

which is related to the estimate \rho(u)\approx u^{-u} below.

The Golomb–Dickman constant has an alternate definition in terms of the Dickman–de Bruijn function.

Estimation

A first approximation might be \rho(u)\approx u^{-u}.\, A better estimate is

:\rho(u)\sim \frac 1 {\xi\sqrt{2\pi u}} \cdot \exp(-u\xi+\operatorname{Ei}(\xi))

where Ei is the exponential integral and ξ is the positive root of

:e^\xi-1=u\xi.\,

A simple upper bound is \rho(x)\le1/x!.

class="wikitable" style="float:right"
u

! \rho(u)

1

| 1

2

| 3.0685282{{e

1}}
3

| 4.8608388{{e

2}}
4

| 4.9109256{{e

3}}
5

| 3.5472470{{e

4}}
6

| 1.9649696{{e

5}}
7

| 8.7456700{{e

7}}
8

| 3.2320693{{e

8}}
9

| 1.0162483{{e

9}}
10

| 2.7701718{{e

11}}

Computation

For each interval [n − 1, n] with n an integer, there is an analytic function \rho_n such that \rho_n(u)=\rho(u). For 0 ≤ u ≤ 1, \rho(u) = 1. For 1 ≤ u ≤ 2, \rho(u) = 1-\log u. For 2 ≤ u ≤ 3,

:\rho(u) = 1-(1-\log(u-1))\log(u) + \operatorname{Li}_2(1 - u) + \frac{\pi^2}{12}.

with Li2 the dilogarithm. Other \rho_n can be calculated using infinite series.{{cite journal |first1=Eric |last1=Bach |first2=René |last2=Peralta |url=http://cr.yp.to/bib/1996/bach-semismooth.pdf |title=Asymptotic Semismoothness Probabilities |journal=Mathematics of Computation |volume=65 |issue=216 |pages=1701–1715 |year=1996 |doi=10.1090/S0025-5718-96-00775-2 |bibcode=1996MaCom..65.1701B |doi-access=free }}

An alternate method is computing lower and upper bounds with the trapezoidal rule;{{cite journal |first1=J. |last1=van de Lune |first2=E. |last2=Wattel |title=On the Numerical Solution of a Differential-Difference Equation Arising in Analytic Number Theory |journal=Mathematics of Computation |volume=23 |issue=106 |year=1969 |pages=417–421 |doi=10.1090/S0025-5718-1969-0247789-3 |doi-access=free }} a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.{{cite journal |first1=George |last1=Marsaglia |first2=Arif |last2=Zaman |first3=John C. W. |last3=Marsaglia |title=Numerical Solution of Some Classical Differential-Difference Equations |journal=Mathematics of Computation |volume=53 |issue=187 |year=1989 |pages=191–201 |doi=10.1090/S0025-5718-1989-0969490-3 |doi-access=free }}

Extension

Friedlander defines a two-dimensional analog \sigma(u,v) of \rho(u).{{cite journal |first=John B. |last=Friedlander |title=Integers free from large and small primes |journal=Proc. London Math. Soc. |volume=33 |issue=3 |pages=565–576 |year=1976 |doi=10.1112/plms/s3-33.3.565 }} This function is used to estimate a function \Psi(x,y,z) similar to de Bruijn's, but counting the number of y-smooth integers with at most one prime factor greater than z. Then

:\Psi(x,x^{1/a},x^{1/b})\sim x\sigma(b,a).\,

See also

References

Further reading

  • {{Cite arXiv

|first1=David

|last1=Broadhurst

|title=Dickman polylogarithms and their constants

|eprint=1004.0519

|year=2010

|class=math-ph

}}

  • {{cite journal

|first1=Kannan

|last1=Soundararajan

|title=An asymptotic expansion related to the Dickman function

|arxiv=1005.3494

|year=2012

|journal=Ramanujan Journal

|volume=29

|issue=1–3

|doi=10.1007/s11139-011-9304-3

|mr=2994087

|pages=25–30

|s2cid=119564455

}}

  • {{mathworld|urlname=DickmanFunction|title=Dickman function}}

{{DEFAULTSORT:Dickman Function}}

Category:Analytic number theory

Category:Special functions