Dickman function
{{Short description|Mathematical function}}
Image:Mplwp Dickman function log.svg.]]
In analytic number theory, the Dickman function or Dickman–de Bruijn function ρ is a special function used to estimate the proportion of smooth numbers up to a given bound.
It was first studied by actuary Karl Dickman, who defined it in his only mathematical publication,{{cite journal |first=K. |last=Dickman |title=On the frequency of numbers containing prime factors of a certain relative magnitude |journal=Arkiv för Matematik, Astronomi och Fysik |volume=22A |issue=10 |year=1930 |pages=1–14 |bibcode=1930ArMAF..22A..10D }} which is not easily available,{{Cite web |title=nt.number theory - Reference request: Dickman, On the frequency of numbers containing prime factors |author=Various |website=MathOverflow |date=2012–2018 |url= https://mathoverflow.net/questions/89362/reference-request-dickman-on-the-frequency-of-numbers-containing-prime-factors}} Discussion: an unsuccessful search for a source of Dickman's paper, and suggestions on several others on the topic. and later studied by the Dutch mathematician Nicolaas Govert de Bruijn.{{cite journal |first=N. G. |last=de Bruijn |url=http://alexandria.tue.nl/repository/freearticles/597499.pdf |title=On the number of positive integers ≤ x and free of prime factors > y |journal=Indagationes Mathematicae |volume=13 |year=1951 |pages=50–60 }}{{cite journal |first=N. G. |last=de Bruijn |url=http://alexandria.tue.nl/repository/freearticles/597534.pdf |title=On the number of positive integers ≤ x and free of prime factors > y, II |journal=Indagationes Mathematicae |volume=28 |year=1966 |pages=239–247 }}
Definition
The Dickman–de Bruijn function is a continuous function that satisfies the delay differential equation
:
with initial conditions for 0 ≤ u ≤ 1.
Properties
Dickman proved that, when is fixed, we have
:
where is the number of y-smooth (or y-friable) integers below x.
Ramaswami later gave a rigorous proof that for fixed a, was asymptotic to , with the error bound
:
in big O notation.{{cite journal |first=V. |last=Ramaswami |url=https://www.ams.org/bull/1949-55-12/S0002-9904-1949-09337-0/S0002-9904-1949-09337-0.pdf |title=On the number of positive integers less than and free of prime divisors greater than xc |journal=Bulletin of the American Mathematical Society |volume=55 |issue=12 |year=1949 |pages=1122–1127 |doi= 10.1090/s0002-9904-1949-09337-0 | mr=0031958|doi-access=free }}
Applications
Image:Dickman_prob_factor_size.svg
The main purpose of the Dickman–de Bruijn function is to estimate the frequency of smooth numbers at a given size. This can be used to optimize various number-theoretical algorithms such as P–1 factoring and can be useful of its own right.
It can be shown that{{cite journal |first1=A. |last1=Hildebrand |first2=G. |last2=Tenenbaum |url=http://archive.numdam.org/article/JTNB_1993__5_2_411_0.pdf |title=Integers without large prime factors |journal=Journal de théorie des nombres de Bordeaux |volume=5 |issue=2 |year=1993 |pages=411–484 |doi=10.5802/jtnb.101|doi-access=free }}
:
which is related to the estimate below.
The Golomb–Dickman constant has an alternate definition in terms of the Dickman–de Bruijn function.
Estimation
A first approximation might be A better estimate is
:
where Ei is the exponential integral and ξ is the positive root of
:
A simple upper bound is
class="wikitable" style="float:right" |
! |
---|
1
| 1 |
2
| 3.0685282{{e |
1}} |
3
| 4.8608388{{e |
2}} |
4
| 4.9109256{{e |
3}} |
5
| 3.5472470{{e |
4}} |
6
| 1.9649696{{e |
5}} |
7
| 8.7456700{{e |
7}} |
8
| 3.2320693{{e |
8}} |
9
| 1.0162483{{e |
9}} |
10
| 2.7701718{{e |
11}} |
Computation
For each interval [n − 1, n] with n an integer, there is an analytic function such that . For 0 ≤ u ≤ 1, . For 1 ≤ u ≤ 2, . For 2 ≤ u ≤ 3,
:
with Li2 the dilogarithm. Other can be calculated using infinite series.{{cite journal |first1=Eric |last1=Bach |first2=René |last2=Peralta |url=http://cr.yp.to/bib/1996/bach-semismooth.pdf |title=Asymptotic Semismoothness Probabilities |journal=Mathematics of Computation |volume=65 |issue=216 |pages=1701–1715 |year=1996 |doi=10.1090/S0025-5718-96-00775-2 |bibcode=1996MaCom..65.1701B |doi-access=free }}
An alternate method is computing lower and upper bounds with the trapezoidal rule;{{cite journal |first1=J. |last1=van de Lune |first2=E. |last2=Wattel |title=On the Numerical Solution of a Differential-Difference Equation Arising in Analytic Number Theory |journal=Mathematics of Computation |volume=23 |issue=106 |year=1969 |pages=417–421 |doi=10.1090/S0025-5718-1969-0247789-3 |doi-access=free }} a mesh of progressively finer sizes allows for arbitrary accuracy. For high precision calculations (hundreds of digits), a recursive series expansion about the midpoints of the intervals is superior.{{cite journal |first1=George |last1=Marsaglia |first2=Arif |last2=Zaman |first3=John C. W. |last3=Marsaglia |title=Numerical Solution of Some Classical Differential-Difference Equations |journal=Mathematics of Computation |volume=53 |issue=187 |year=1989 |pages=191–201 |doi=10.1090/S0025-5718-1989-0969490-3 |doi-access=free }}
Extension
Friedlander defines a two-dimensional analog of .{{cite journal |first=John B. |last=Friedlander |title=Integers free from large and small primes |journal=Proc. London Math. Soc. |volume=33 |issue=3 |pages=565–576 |year=1976 |doi=10.1112/plms/s3-33.3.565 }} This function is used to estimate a function similar to de Bruijn's, but counting the number of y-smooth integers with at most one prime factor greater than z. Then
:
See also
- Buchstab function, a function used similarly to estimate the number of rough numbers, whose convergence to is controlled by the Dickman function
- Golomb–Dickman constant
- Poisson-Dirichlet distribution
References
Further reading
- {{Cite arXiv
|first1=David
|last1=Broadhurst
|title=Dickman polylogarithms and their constants
|eprint=1004.0519
|year=2010
|class=math-ph
}}
- {{cite journal
|first1=Kannan
|last1=Soundararajan
|title=An asymptotic expansion related to the Dickman function
|arxiv=1005.3494
|year=2012
|journal=Ramanujan Journal
|volume=29
|issue=1–3
|doi=10.1007/s11139-011-9304-3
|mr=2994087
|pages=25–30
|s2cid=119564455
}}
- {{mathworld|urlname=DickmanFunction|title=Dickman function}}
{{DEFAULTSORT:Dickman Function}}